Equine Perinatology

Gastrointestinal and respiratory problems

http://nicuvet.com

Infectious Gastrointestinal Problems of the Neonate

Jon Palmer, VMD

Director of Perinatology/Neonatology Programs Chief, Neonatal Intensive Care Service New Bolton Center University of Pennsylvania, USA

Gastrointestinal Problems

- Most common problems of neonatal foals
- Range from mild to life threatening
- Infectious diarrheas
 - Most important herd problems
 - Often high morbidity
 - Once begin, every new born foal at great risk
 - It may return and become a farm problem year after year
 - Variable mortality
 - Costly to treat
 - Economically
 - Human resources
 - Our knowledge of etiologies incomplete
 - Multiple pathogens often present

Enterocolitis

- Foals with diarrhea may have
 - Simple GI upset with the problem confined to the lumen
 - Significant intestinal inflammation
 - Leading to widespread systemic inflammation

• Foals with enterocolitis

- May develop systemic inflammation
- May develop metabolic complications and mutliorgan failure
 - Acidosis
 - Hypovolemic shock
 - Hypotension
- May develop systemic infections
 - Bacteremia
 - Secondary infections
 - Secondary pathogens
 - Secondary sites of infection/inflammation
 - o Pneumonia
 - Hepatitis
 - Nephritis
 - Physitis

Infectious Causes of Foal Diarrhea

Clostridial enteritis

- o Clostridium difficile
- o Clostridium perfringens
- Salmonellosis
- Escherichia coli
 - Part of a systemic infection
 - Rarely a primary enteritis opportunist

Others?

- o Aeromonas hydrophila
- o Streptococcus durans
- o Clostridium sordelli
- o Bacteroides fragilis
- o Others???
- Viral
 - o Rotavirus
 - o Coronavirus
 - o Adenovirus
 - o Others??
- Other?
 - o Cryptosporidium parvum

- Clostridia can be found in clinically healthy foals
- Pathogenesis depends on
 - o **Host**,
 - o Pathogen
 - o Environmental factors
- Epidemiology is complex
 - Limited colonization common causing no disease
 - Critical number that causes clinical disease varies with strains
 - Diagnosis often made by toxin gene detection
 - Toxin gene PCRs soft diagnosis but easy
 - If target toxin gene not present still could be clostridial infection
 - Enterotoxin gene most common PCR target many strain lack
 - Culture of *Clostridia spp* is not enough to make a diagnosis
 - Best diagnosis is finding toxin gene and positive culture
- Signs
 - Diarrhea (hemorrhagic C. perfringens Type C)
 - Colic
 - o Tachypnea
 - Depression

- Onset usually < 36 hr, < 24 hr
 - Often as soon as meconium passes
 - o 6-12 hr old
 - Herd outbreak on breeding farm
 - First few foals born OK
 - Then first clinic cases begin at 24-36 hr
 - Soon every foal born develops enteritis between 6 and 12 hr
 - As soon as meconium passed enteritis

Clinical lab as expected

- o Leukopenia, neutropenia, lymphopenia
- Left shift
- Hyperfibrinogenemia
- Low Na, K, Cl, HCO₃, hypoproteinemia
- Often IgG OK still give plasma

• Therapy

- Specific therapy
 - Metronidazole
 - Vancomycin?
- Supportive therapy
 - Intensive fluid therapy
 - Continuous fluids best but bolus therapy can be successful
 - Inotrop/pressor therapy rarely needed
 - Electrolyte replacement therapy
 - Plasma therapy independent of passive transfer
 - C perfringens type C and D antitoxin?

• Therapy

- Antidiarrheal therapy
 - Di-tri-octahedral smectite (Biosponge)
 - Absorb toxins??
 - Bismuth subsalicylate
 - Other antidiarrheals

Outcome

- With early intensive therapy mortality 5-10%
 - Farm problem labor intensive and expensive therapy
 - Likely to occur next breeding season on same farm
- Mortality higher with C. perfringens Type C
- Varies with outbreak to certain extent

Prevention

- Good hygiene
- Strict isolation protocols
- Vaccination??
 - C perfringens type C and D toxoid ??
 - o Safety and efficacy???

Spores

- Virtually impossible to eliminate
- Reduce numbers with good hygiene
 - Cleaning (scrubbing) remove all organic material
 - Disinfection (bleach or other disinfectant)

- Endemic enterocolitis in foals of all ages
- Herd problem
 - Endemic strains, often multiple strains in individual cases
 - Breeding farms
 - Endemic strains
 - Long time resident mares resistant
 - Transient mares susceptible
 - New mares may introduce new strains
 - Wildlife's role
 - In feed, pellets
 - o Calcium source
 - Contaminated feed mills
 - Density of housing
 - All ages
 - Neonates, sucklings
 - Weanlings, yearlings
 - With stress
 - Diet changes
 - Housing, grouping changes

- Clinical signs range widely
 - Localized enteritis
 - Diarrhea occasionally hemorrhagic
 - Fever
 - Colic
 - Dehydration
 - Hyponatremia, hypokalemia, azotemia, acidosis
 - Depression
 - Not suckling

- Systemic signs
 - Hypotensive shock
 - Multiorgan dysfunction
 - Secondary sites of infection
- Other foci with or without enteritis
 - Bacteremia not localized
 - Physitis, synovitis, osteomyelitis
 - Vertebral body abscesses
 - Nephritis
 - Hepatitis
 - Pneumonia/pleuritis
 - Uveitis

- Therapy
 - Aggressive fluid therapy
 - Close attention to K and HCO₃ replacement
 - Systemic antimicrobials
 - Often multiply resistant
 - Aminoglycosides??
 - o Amikacin
 - o Gentamycin
 - Cephalosporins, potentiated beta lactams
 - Especially with aminoglycoside
 - Others
 - Inopenum only when resistance pattern is known
 - Not antimicrobials routinely used on the farm
 - Should do antibiogram on outbreak isolates

• Therapy

- Plasma transfusions
 - Not for protein replacement
 - For antibodies but also other immunomodulators
 - IgG level should not be trigger
- Other symptomatic antidiarrheal therapy

Rotavirus

Epidemiology

- \circ Clinical signs when 5 to 35 days old
 - Most subclinical
- Wide range of severity in clinical signs
- Numbers game severity depends on:
 - Exposure dose
 - Depends on environmental contamination
 - More and younger foals infected higher shedding rate
 - Shedding heavier from clinical vs subclinical cases
 - Host resistance factors
 - Age
 - Passive immunity
 - Mare's exposure history
 - Population density
 - Other concurrent infections
 - > 90% exposed before reach training
 - Most subclinical

Rotavirus

Clinical Signs

- Mild to severe diarrhea
- Association with gastroduodenal ulcer syndrome????

Pathogenesis

- Maldigestion and malabsorption
- Villous atrophy, compensatory crypt cell proliferation
 - Decrease in fluid absorption/ increase in secretion
 - Maldigestion, lactose enter the colon
 - Fermentation increase osmotic fluid retention
 - Less CI/HCO3 exchange in ilium
 - Less buffer for VFA absorption colon
 - o Osmotic diarrhea
- Diagnosis
 - Viral particles easily detected rapid test in practice
 - \circ Finding virus \neq cause of diarrhea
 - Infection universal in young horses
 - Not always cause of problem

Rotavirus

Control

- o Good husbandry
- Decreasing environmental contamination
 - Cleaning/ disinfection
 - Virus can survive for months in the environment
 - Population control
- Increase herd immunity
 - Rotavirus vaccines
 - Bring mares onto farm early
 - \circ To expose them to all the endemic flora

Therapy

- Antimicrobials
- Fluid Therapy
 - o What
 - **How**
 - How much
- Plasma why?
- Antidiarrheals
- Management isolation
- Owner/farm manager control?

Bacteremia in Foals with Diarrhea

- J Vet Intern Med 2008;22:1203–1209
- 50% (66 of 133 foals) bacteremic at admission
 75 isolates from the 66 samples
- Multiple isolates
 - **7 % (9 foals)**.
- 57% Gram-negative, 43% Gram-positive
 - Enterococcus spp. (22 isolates, 29%)
 - Pantoea agglomerans (13 isolates, 17%)
- IgG at admission not associated
- Survival not associated
- Bacteremia common but not associated with prognosis

Antimicrobials

Aminoglycosides

- o Amikacin
 - 30 min Peak >60 (MIC < 16 S; >32 R), 23 hr trough < 2
 - Dose < 1 week 30-35 mg/kg
 - Dose 2-4 weeks 20-25 mg/kg
- Gentamycin
 - 30 min Peak >40 (MIC < 4 S; >8 R), 23 hr trough < 2
 - Dose < 1 week 20-25 mg/kg
- Effectiveness depends on high peak then dropping to trough
- Toxicity
 - Not dropping to tough
 - Length of therapy
 - Toxicity not associated with high peak
 - Higher peak better killing but not more toxicity
- B-lactams
 - Penicillin derivatives
 - Cephalosporins
 - Ceffiofur IV
 - 10 mg'kg QID slow infusion over 20 min
 - CRI 1.5 mg/kg/hr (3 hr aliquots)
 - Carbapenems Imipenem
- See website for other options/doses: <u>NICUvet.com</u>

Fluid Therapy

- New ideas
- General Principles
- Different clinical situations
 - Hypoperfusion with and without fluid loss
- Fluid therapy changes the endothelial glycocalx

Myburgh JA, Mythen MG. Resuscitation Fluids. N Engl J Med 2013;369:1243-51.

Endothelial Glycocalyx

- Complex, multicomponent
- Functions
 - Molecular sieve
 - Lubrication layer
 - RBC motion
 - o Inhibitor of inflammation
 - Shear sensor
 - Plasma flow-induced fluid shear strain

- Hydrostatic forces push fluid through glycocalyx
 - Forces albumin and other osm particles into web
 - Forms a gradient with more caught outside
 - Any protein making it through washed into interstitium
 - Forms oncotic gradient
 - Not effected by interstitial protein content

Endothelial Glycocalyx

Molecular sieve

- Fence-like meshwork
- \circ Size exclusion of plasma molecules
- Semipermeable filter to large solutes

Soluble components caught in meshwork

o Albumin

Fluid Type and the EGL

- Transvascular fluid filtration
 - Depends on endothelial glycocalyx
 - If intact with normal capillary pressures
 - Crystalloids freely pass
 - $\circ~$ Colloids are held back
 - If damaged neither are held back
- Intravascular hypovolemia
 - Low capillary pressures
 - No filtration crystalloids or colloids
- Damage EGL loss of filtering ability
 - Hypervolemia
 - Rapid fluid administration
 - Sepsis (inflammatory mediators, TNF)
 - o Ischemia/Reperfusion

From: http://www.hubrecht.eu

EGL – Damage by Hypervolemia

- Theory
 - Volume sensed by atria
 - Release natriuretic peptides (ANP)
 - Which activates metalloproteinases

From: Myburgh JA, Mythen MG. Resuscitation Fluids. N Engl J Med 2013;369:1243-51.

Fluid Type Crystalloids vs Colliods

- Depend on state of endothelial glycocalyx layer
- Colloid increases intravascular volume
 - Resuscitation from hemorrhage
- No difference intravascular volume
 - o **Sepsis**
 - Inflammatory states
 - o **Trauma**
 - Hypervolemia
- Crystalloids and colloids will have the same effect

Albumin

Albumin within the Endothelial Glycocalyx Layer

- Determinant of its filter function
- Works as long as plasma albumin at least 1/2 normal
- Congenital analbuminaemia/ acquired hypoalbuminaemia
 - Other proteins become important

Albumin

- In health about 40% intravascular
- In inflammation
 - Intravascular albumin will decrease
 - Extravascular proportion will increase
- Transcapillary escape rate of albumin (TCERA)
 - Index of 'vascular permeability'
 - normal 5% per hour
 - 2x during surgery
 - > 20% per hr in septic shock

Endothelial Glycocalyx "Capillary Leak"

- Normovolemia
 - Endothelial glycocalyx layer healthy
 - Colloids remain intravascular
 - Crystalloids leak

Hypervolemia (fluid therapy)

- Endothelial glycocalyx damaged
- Colloids and crystalloids leak
- Hypovolemia
 - Colloids and crystalloids remain intravascular
- Sepsis
 - Endothelial glycocalyx damaged
 - Colloids and crystalloids leak with fluid therapy

Fluid Therapy How Much?

Vasogenic shock vs fluid loss leading to shock

- Hypovolemia vs dehydration
- With diarrhea volume needed indicated perfusion and ongoing diarrhea

Bolus therapy

- **10-20 ml/kg bolus**
- Bolus effect
 - Time to return to pre-bolus vascular volume
 - Adult 3 hr < 5% of infused volume intravascular
 - Neonate 0.5-1 hr < 6-7 % of infused volume intravascular
 - Needed but effect short-lived
 - Increases interstitial fluid volume

Fluid Therapy How Much?

- How to tell if you have given enough?
 - Clinical clues lie
 - Signs of too much fluids
 - Warm legs
 - Good pulses
 - All the clues we previously used to tell if we had corrected dehydration
 - o But need to keep up with loss from diarrhea
 - But need to maintain CO
- Rescue vs maintenance

Septic Shock Volume Resuscitation

Immediate positive effect

- Increased perfusion
- Patient "looks better" but ...

Rapid infusion – adverse effects

- Fluid responder
 - CO increases
- \circ Increased shear stress
 - Increases NO
 - Vasodilatation

Septic Shock Volume Resuscitation

Increased cardiac filling pressure

- Increased right atrial pressure
- o Increase natriuretic peptide
 - cGMP-mediated vasodilatation
 - Cleaves endothelial glycocalyx
 - Endothelial barrier injury
- Capillary leak
 - At 3 hr. < 5% crystalloid intravascular
 - Increased tissue edema
 - Myocardial dysfunction

Once Shock Reversed

- Positive fluid balance = increased mortality
 - o Acute load
 - Rapid unload diuresis

Patients who rapidly unload live

- Less severe disease?
- Can we influence outcome?

• Dilemma

- Initially fluids are helpful in shock
- But once shock reversed harmful

Restrictive fluid strategy

- Early use inopressors
- Reverse severe vasodilatory shock

Fluid Therapy

• Timing

- Fluid type
 - Electrolyte mix
 - Which fluid mix?
- Volume how much?
 - Resuscitation shock
 - o Timely
 - Adequate
 - But harmful!
- Bolus Therapy
 - Timing
 - \circ Positive effects
 - Negative effects

Are Fluid Boluses Needed?

Clinical guess

- Clinicians can't guess correctly
 - Clinical examination
 - Hemodynamic indices (e.g. CVP)
- 50% improve outcome
- o 50% cause harm

Fluid Therapy Critical Patients

- Past focus on short-term goals
 - Rapid correction of hypovolemia
 - Emergency resuscitation
 - Clinically immediately rewarding but ...

Potential longer-term consequences

- Contribution to organ failure
- Long term mortality/morbidity
- Losses from diarrhea
 - Need fluids to keep up with
 - But these fluids are harmful

Fluid Therapy Things I Try to Do

- Bolus fluids but not too much
 - No good stall side guide
- Stop high rates fluids early
 - Before legs warm
 - Give IV nutrition
 - In as small a volume as practical
 - Na restriction in neonates?
 - But enteritis GI Na loss
 - Need to keep up with
 - Balanced fluids, NOT hyponatremic fluids
 - Cl restriction
 - Don't use saline

Fluid Therapy Things I Try to Do

- Watch weight increases as gauge?
 - Confounding factors
- Fluid restriction
 - o If good perfusion
 - Signs fluid overload
 - Edema
 - Weight gains
- No good clinical guides
 - Too much vs too little
 - Be well aware of possible harm
- Type of fluid
 - With diarrhea
 - Balanced fluids
 - When diarrhea resolves
 - Mare's milk diet ideal
 - Sodium restriction (3-4 mEq/kg/day) if continued IV fluids
 - Chloride restriction
 - Don't use saline

Goldilocks Principle

Getting it "Just Right"

Plasma Therapy

IV plasma administration

- Should be considered in all critically ill foals
- IgG level should not be a deciding factor
- If available and affordable it should be given
- o If the foal is septic
 - Plasma can supply many helpful factors
 - IgG, acute phase proteins, C-reactive protein, albumin, etc
 - Opsonins, compliment, clotting factors, protease inhibitors, etc.

IgG measurement

- May reflect passive transfer
- May reflect IgG catabolism
 - Specific
 - Nonspecific
- Is quantitative and not qualitative
 - High level does not mean useful antibodies are present
- Important source of albumin

Antidiarrheals

- Bismuth subsalicylate
 - Mechanism NOT coating
 - Block PG?? flunixin
 - But don't use flunixin
 - Nonspecific binding and a reduction in bioavailability??
- Kaolin/pectin?
- Activated charcoal
 - Can bind endotoxin and reduce its absorption
 - \circ May bind other toxins
- Di-tri-octahedral smectite (Biosponge)
 - Can bind endotoxin and reduce its absorption
 - Neutralize toxins of *C* difficile and *C* perfringens in vitro???
 - Location and concentration of Clostridial exotoxins
 - Luminal neutrolization not likely to be effective
- Probiotics/ prebiotics
 - Yeast Saccharomyces boulardii for use in enteric clostridiosis
 - Suggested not to use because of "open gut"
 - All neonatal foals up to several weeks enterocyte pinocytosis

General Therapy

- Gastric acid blockers should not be used
 - With hypovolemia stomach does not produce acid
 - Ulcers not caused by acid in these cases
 - Ulcers secondary to hypoperfusion, trauma
 - When acid production is blocked
 - Allow GI colonization of pathogen
 - Translocation and bacteremia more likely
- Sucralfate has many actions
- Antiendotoxin therapy
 - o Flunixin
 - o Polymyxin B
- Nutritional support

