Neonatal Physiology and the Stressed Neonate

JON PALMER, VMD, DACVIM
NEW BOLTON CENTER, KENNETT SQUARE, PENNSYLVANIA

Jon Palmer, VMD

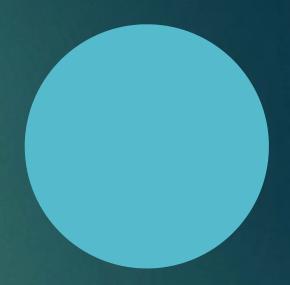
I have no disclosures related to this presentation.

Neonatal Period

- ▶ Physiologic transition period
 - ► Full dependence on maternal physiology
 - ► Adaptation to independent life
- ► Period transition all organ systems
 - ▶ First 3 to 4 weeks of life

Physiologic Transitions

Counterintuitive Physiology


▶ Different from Adult Physiology

► Fetal Physiology

Renal Response to Hypovolemia

- Adult kidney
 - ► Producing concentrated urine
 - ▶ Maintain vascular volume
- Fetus
 - ▶ Concentrated urine
 - ► Increase fetal fluid osmolarity
 - ▶ Prevent reabsorption of the fluids
 - ▶ Draw fluid from the fetus
 - ► Negative effect on volemia


Renal Response to Hypovolemia

- ▶ Produces dilute urine
 - ▶ Decrease fetal fluid osmolarity
 - ► Enhance reabsorption of fetal fluids
 - ▶ Positive effect on volemia

Heart Rate Response To Hypoxemia

- ▶ Adult
 - ▶ Tachypnea and tachycardia
 - ▶ Deliver more oxygen to tissues
- ▶ Fetus
 - ▶ Bradycardia
 - Maximizing perfusion of fetal placenta
 - ► Increasing vascular tone directing blood to vital organs
 - Increase in afterload
 - ▶ Increase cardiac work and thus oxygen demand
 - ▶ Decrease HR
 - New circulatory pattern
 - ▶ Requires no more oxygen

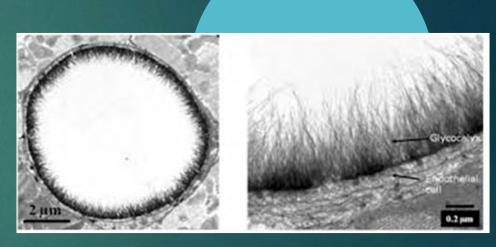
Species

Fluid Physiology

Fluid Physiology Fetus/Neonate

- Unique characteristics of Fetal/ Neonatal
 - ▶ Interstitium
 - ► Lymph flow
 - ▶ Capillary endothelial permeability
- Interstitium
 - ► Heterogeneous space
 - Dynamically controls its fluid content
 - Compliance 10X adult (fetal lamb)

Fluid Physiology Fetus/Neonate


- ▶ Lymph flow
 - ▶ Volume of lymph 1 mL/kg in adult dogs
 - ► Thoracic duct lymph flow
 - ▶ Fetal lamb 0.25 mL/minute/kg
 - ▶ 5x the adult rate
 - ► Lymph flow subcutaneous
 - Puppies 2X adult dogs (per kg)
 - ► Pulmonary lymph flow
 - ▶ Newborn lambs and puppies > adults
 - ▶ Neonate local/ whole body lymph flow > adult
 - ▶ Increased interstitial volume
 - ▶ Higher capillary permeability

Fluid Physiology Fetus/Neonate

- Capillary endothelial permeability
 - ► Filtration rate in fetal lambs vs adults
 - ► Fluid 5x mare than adults
 - ▶ Proteins 15x more than adults
 - ▶ Why?
 - ► Poor precapillary tone
 - ► Higher capillary hydrostatic pressure
 - ▶ Higher filtration
 - ▶ The role of the glycocalyx?
 - ► Filtration related to hydrostatic pressure
 - ▶ Precapillary tone lambs develops during 1st week
 - ▶ Doesn't develop in a uniform manner

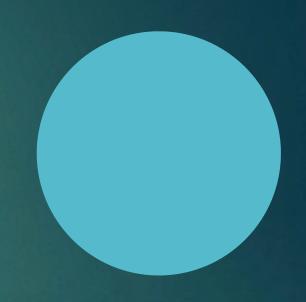
From: http://www.hubrecht.edu

Fluid Physiology At Birth

- ► Blood pressure increases lambs
 - ► Last weeks increases 20%
 - ▶ During labor increases another 18%
 - ▶ At birth increases another 12%
- ► Transmitted to capillaries
- Increased transcapillary filtration
 - ▶ Poor precapillary tone

Fluid Physiology At Birth

- ▶ Other reasons for fluid shifts
 - ▶ Direct compression of the fetus
 - ► Increased venous pressure
 - Vasoactive hormones
 - ► Arginine vasopressin
 - ▶ Norepinephrine
 - ▶ Cortisol
 - ► Atrial natriuretic factor


Fluid Physiology Neonates are Born Fluid Overloaded

- ▶ Fluid shifts
 - ▶ From fetal fluids / maternal circulation
 - Accumulating in the fetal interstitium
- All Neonates Are Born Fluid Overloaded
- Rate of loss of this fluid species variation
 - ► Foal weeks
 - Other species
 - ▶ 10-15% body weight rapidly after birth
 - ▶ Important not to replace fluid loss
 - ▶ Poor outcomes with persistent fluid overload

Fluid Physiology Consequences

- Response to Hemorrhage
- Response to Volume Loading
- ▶ Response to Hypoxia

Fluid Physiology Response to Hemorrhage

- Perinatal blood loss
 - ► Rupture of umbilical vessels
 - ▶ Internal bleeding
 - ▶ Premature placental separation
 - ► Fetofetal transfusion
 - ► Fetomaternal transfusion

Fluid Physiology Response to Hemorrhage

- ▶ 30% loss of blood
 - ► Adult dogs, cats, and sheep
 - ► With out fluid therapy 24 to 48 hours
 - ► Fetus or neonate is shorter
 - ▶ Fetal sheep
 - ► 2x adults within 30 minutes
 - ▶ 100% blood volume within 3 to 4 hours

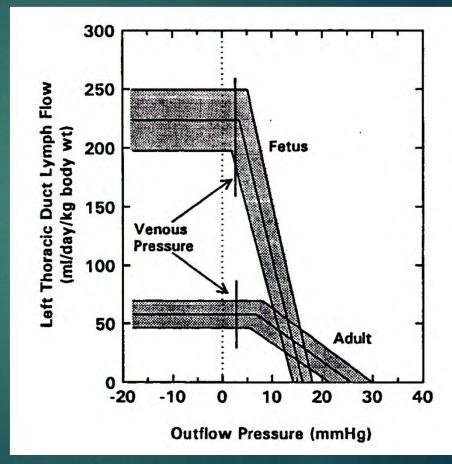
Fluid Physiology Response to Hemorrhage

- Neonatal kittens and rabbits
 - ▶ Greater blood loss /kg before BP decrease
 - ► Translocation fluid and protein
 - ► From the interstitial space
 - ▶ Tolerate blood loss better than adults

- ► Rapid intravascular infusions crystalloids
 - ▶ Fetal lambs 6 to 7% retained at 30-60 min
 - ▶ Adults 20% to 50% retained at 30-60 min
- ► Rapid transfer into the interstitial space
 - ► High interstitial compliance
 - ▶ High capillary filtration coefficient

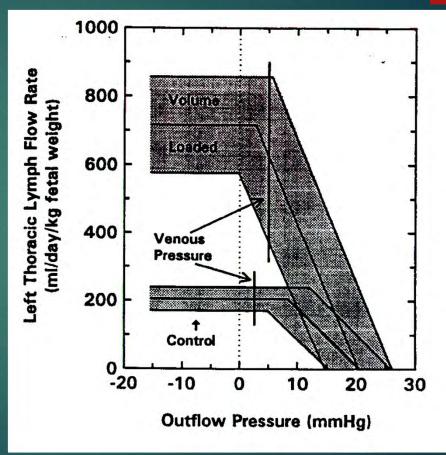
- ► Fluid Overload lack of intravascular retention
 - ► Adults (dogs, sheep)
 - ▶ The adult clears the fluid load hours
 - ▶ Renin
 - ▶ Vasopressin
 - ► Atrial natriuretic factor

- Fluid Overload lack of intravascular retention
 - ▶ Neonates (puppies, lambs)
 - ▶ 24 to 36 hr to clear fluid load
 - Volume load escapes vasculature space quickly
 - ► Escape volume sensors detection
 - ▶ No diuretic response
 - ▶ Urine flow rapidly returns to normal
 - ▶ Before clearing volume load



- After fluid loading (fetal lambs, neonatal lambs)
 - ► Increase thoracic duct lymph flow
 - ▶ Increase by 3.5 times (max flow rate)
 - ► Angiotensin II augments lymph flow
 - ► Fluid therapy rapid infusion
 - ▶ Increases CVP
 - ▶ Dramatic decrease in lymphatic flow
 - ▶ Result in edema

Thoracic Lymph Flow


- ▶ Fetal lamb
- ▶ Adult sheep

From: Brace RA et.al.

Thoracic Lymph Flow

- ▶ Fetal lamb
- With large volume intravenous infusion
 - ▶ ↑↑ Lymph flow as much as 340%
 - ▶ Limited by CVP

From: Brace RA et.al.

Fluid Physiology Response to Hypoxia

- Moderate/severe hypoxemia (fetal lambs)
 - ► Increases arterial and venous pressures
 - ▶ Poor precapillary tone
 - ▶ Increase capillary pressure
 - ► Greater fluid shift interstitial space
 - ▶ Leading to excessive fluid overload

Fluid Physiology Response to Hypoxia

- ▶ All neonates
 - ▶ Fluid overloaded at birth
- With hypoxia/asphyxia
 - Greater degree of fluid overload
- ► Hypovolemic with concurrent fluid overload

Renal Physiology

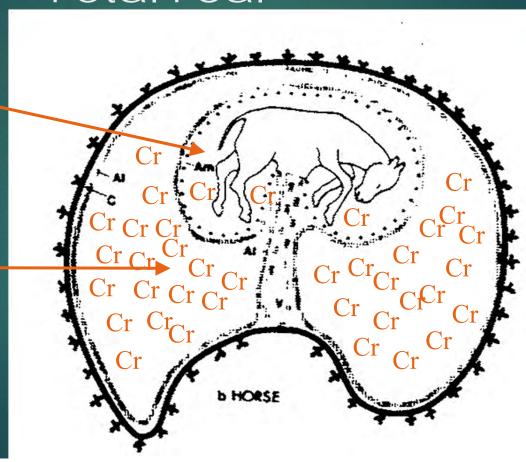
Renal Physiology Renal Maturation At Birth

- ▶ Nephrogenesis is complete, GFR adult levels in days
 - ▶ Lambs
 - ▶ Foals
 - ▶ Calves
- ► Nephrogenesis continues 2 + weeks
 - ▶ Puppies
- ▶ ??
 - ▶ Kitten
 - ▶ Kid
 - ▶ Cria

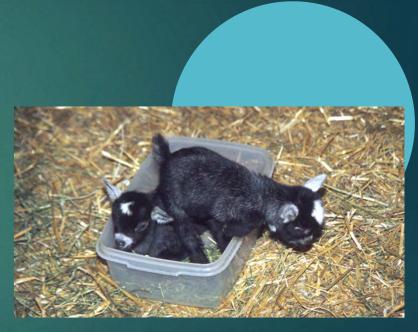
Renal Physiology
Neonatal Puppy Renal Function

- Low GFR
- ► Low renal plasma flow (RPF)
- ► Low filtration fraction (FF)
- Decreased tubular reabsorption
 - Amino acids
 - Phosphate
- Exaggerated proximal tubule natriuresis
 - ▶ Balanced by increased distal tubule Na reabsorption
- Low concentrating ability

Renal Physiology Neonatal Cr & BUN Levels


- ▶ BUN
 - Lower than adults
 - Dependent on nutrition
- Cr level at birth
 - Cr lower than adult
 - ▶ Puppy
 - Adult level at birth
 - ▶ Infant increase first 48 hr then decreases
 - ► Higher Cr than adult at birth but rapid drop
 - ► Foals
 - ▶ Calves

Renal Physiology Sea of Cr – Fetal Foal


Amnionic Cr 9 – 12 mg/dl

Allantoic Cr 120 - 180 mg/dl

Renal Physiology Renal Perfusion

- ► Fetus 3-5% of cardiac output
- ▶ Birth rapid increases to 15%
 - ▶ Increase in BP
 - ► Renal vascular resistance
 - ► Increases modestly
 - ▶ But less relative to other vascular beds

Renal Physiology Renal Perfusion

- Autoregulation
 - Normal range for age
 - "Autoregulatory range" increases as BP increases
- Puppies
 - ▶ GFR/RPF increase in parallel with
 - ▶ Increases in BP
 - ▶ Decreased in VR
 - ► Not changed by inhibition of angiotensin
 - ▶ Until 6 weeks old
- ► Foal, calf and lamb
 - ▶ GRF becomes adult-like
 - ► Independent of increases in arterial BP

Renal Physiology Neonatal Vasogenic Nephropathy

- ▶ Balancing BP and renal VR
 - Vital for proper renal function
- Neonatal Vasogenic Nephropathy (NVN)
 - ▶ Abnormal levels of vasoactive substances
 - Increased sympathetic tone
- ► Prostaglandins in neonates
 - ▶ Afferent arteriolar vasodilation
 - Counterbalancing endogenous vasoconstrictors
 - ▶ High PG activity is physiologically necessary
 - ▶ Maintain renal perfusion

Renal Physiology NSAID

- Greater potential for adverse renal effects
 - ► Reduce GFR and RBF
 - ► Neonatal Vasogenic Nephropathy
 - Oliguria
 - ▶ Fluid overload
- ▶ Both COX 1 and COX 2 inhibition equal effect

Renal Physiology Hypothermia

- ► Rabbits decreases temperature 2 C
 - Induce renal vasoconstriction
 - Decrease GFR
- ► Hypothermic neonates at risk
 - ► Environmental temperature at birth
 - Sympathoexcitatory response
 - Response occurs before a decrease in core temperature
 - Reversible with rewarming
 - Mediated by cutaneous cold-sensitive thermoreceptors
 - ▶ Not core temperature

Renal Physiology Nephron Development

- Number of nephrons
 - Great variation in normal individuals
 - ► Linear relation with body weight
- Normal and compensatory renal growth
 - Primarily proximal tubular mass

Renal Physiology Nephron Development

- Decrease nephron numbers
 - ▶ Intrauterine growth restriction
 - ▶ Perinatal asphyxia
 - ▶ Shock
 - Exposure of the fetus to maternal administration
 - **▶** NSAIDS
 - ▶ Glucocorticoids
 - ▶ Aminoglycosides
 - ▶ Beta lactam antibiotics

Renal Physiology Tubular Function

- Immature at birth
 - ▶ Low carrier density
 - ▶ Short tubules
- Puppies
 - Urine specific gravity
 - ▶ Birth is limited (1.006 to 1.017)
 - ► Adult levels 12 weeks (8 weeks kittens)
 - ▶ Protein, glucose, amino acids in the urine
 - ▶ Neonate
 - ► Adult levels by 3 weeks

Renal Physiology Tubular Function

- ► Large animal neonates urine specific gravity
 - ► Broad range within 24 hours
 - ▶ 1.001 to > 1.035
 - ▶ Herbivore Milk diet
 - ▶ Usg < 1.004
- ▶ Foal
 - ▶ First urine
 - ▶ 12 hours, Usg > 1.035
 - ▶ 24 hours Usg < 1.004

Renal Physiology Sodium Story

- Positive sodium balance needed for growth
 - ▶ Increase interstitium
 - ▶ Bone growth
- ► Fresh milk is sodium poor
 - ► Mare's milk 9 to 14 mEq/L
 - ▶ 20% milk diet 1.9mEq/kg/day
 - Growth requirement 1 mEq/kg/day

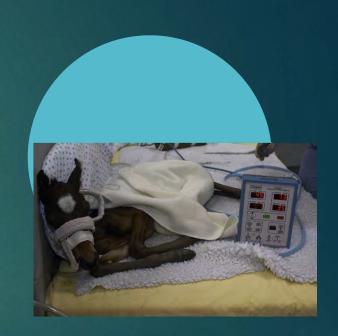
Renal Physiology Sodium Story

- Immature kidney Na reabsorption
 - ▶ With sodium loading in dogs
 - ▶ Proximal tubule 64% adult dog: 48% puppy
 - ▶ Distal tubule 26% adult dog: 51% puppy
 - ► Total 91% adult dog: 98% puppy
- Upregulation distal tubular Na transporters

Renal Physiology Sodium Story

- Slow to respond to Na load
 - Species dependent
 - ▶ Predisposes to Na overload
 - Problem in critically ill neonatal foals
- Crystalloid fluid therapy
 - ▶ Na overload
 - ▶ Fluid overload
 - ▶ Limited urine dilution
 - ▶ Neonatal Vasogenic Nephropathy

Cardiovascular Physiology


Cardiovascular Physiology At Birth

- ▶ Increase in
 - ► Arterial blood pressure
 - ▶ Heart rate
 - ▶ Cardiac output
 - ▶ 4X higher than adult (lamb)
- Regional changes blood flow
 - ► Initially retains low-resistance-high-flow system
 - ▶ Renal 3% to 15% at birth

Cardiovascular Physiology Neonatal Changes

- Puppies
 - ▶ SBP 61±5 birth to 139±4 at 4 wk
 - ► HR 204±3 at birth to 123±6 at 4 wk
- ▶ Large animal neonates
 - Studies confounded by restrain artifacts
 - ► Clinical experience low BP/VR to high BP/VR
 - ▶ Most make a rapid transition
 - ▶ A few neonates retain the low BP/VR maintain excellent perfusion
 - ► Critically ill neonates more likely delay transition

Cardiovascular Physiology Neonates

- ▶ BP cannot be used as surrogate for perfusion
- ► Absolute BP numbers Dangerous therapeutic goals

Cardiovascular Physiology Autonomic influence heart rate

- ▶ Puppies, kittens
 - ► Sympathetic innervation functionally incomplete
 - ▶ Puppies less chronotropic response
 - ▶ Lack of vagal tone minimal response to atropine
 - ▶ Puppies < 14 days
 - ► Kittens < 11 days
 - ▶ Atropine not effective in neonatal resuscitation
- Clinical observations in foals, calves, crias, lambs and kids
 - Autonomic cardiac control at birth
 - Calves, crias
 - Intubation my induce dangerous bradycardia

Cardiovascular Physiology Resetting baroreflex

- Baroreflex sensitivity changes with maturation
 - Resets shifts toward higher pressures
 - > Shifts during fetal life
 - > Shifts immediately after birth
 - Shifts during postnatal period
 - Paralleling BP increases
- Resetting complex
 - Peripheral resetting
 - Level of the baroreceptor
 - Central resetting
 - Sympathetic or parasympathetic activity

Cardiovascular Physiology Resetting baroreflex

- Puppies
 - Baroreceptor reflex absent until 4 days of age
- Large animal neonates
 - Most make rapid transition
 - Some critically ill neonates
 - Retain the fetal baroreceptor set point
 - > Apparent inappropriate bradycardia
 - Low BP
 - But good perfusion

Cardiovascular Physiology Ductus Arteriosus, Foramen Ovale

- > Functional closure
 - > 50% by 24 hr
 - > 90% by 48 hr
- > Anatomic closure
 - > Within weeks
 - Until then powerful survival tool

Cardiovascular Physiology Ductus Arteriosus, Foramen Ovale

- Pulmonary hypertension
 - Hypoxemia
 - Sepsis
- Consequences of Pulmonary hypertension
 - > Adult Hypoxia Ischemia
 - Neonate Hypoxia without ischemia

Confused?

