Respiratory Therapy of the Neonate

Jon Palmer, VMD, DACVIM
Chief, Neonatal Intensive Care Service
New Bolton Center, University of Pennsylvania, USA

Supportive Respiratory Therapy

- Positional therapy
- Intranasal oxygen insufflation
- Increasing cardiac output
- Stenting the airway
- Bronchodilation
- Respiratory stimulants
- Positive pressure ventilation

Hypoxemia Positional Therapy

- Help with V/Q matching Aid oxygen loading
- Helpful if
 Weak
 Poor inspiratory excursions
 Marginal perfusion
- Difference is not seen in all foals
 Fighting the position
 Arterial blood gas samples "worst case scenario"

Hypoxemia Intranasal Oxygen Insufflation

- Oxygen is Most useful/ Most dangerous drug
- INO₂ will correct mismatching
- Should not be used universally
 Based on careful monitoring
 Stall side blood gas analyzers
 But without these most people choose to use O₂
- Complications
 Oxygen toxicity
 Nasal irritation
 Rhinitis
 Airway drying
 - Tracheal and nasal discharge
 - Increased upper airway resistance

Intranasal Oxygen Insufflation

Monitoring effect

- Oxygen therapy is a "double edged sword"
 - How do you tell if you should use it??
- Arterial blood gas
 - Is the gold standard for monitoring
 - \circ Ideal Pao₂ > 60 mmHg & < 80 mmHg
 - Can't always do a blood gas
 - Watch for clinical examination signs of positive effect
- Monitor effect on
 - Respiratory rate and heart rate (work of breathing)
 - Respiratory effort
 - Nostril flair
 - Chest excursion
- Watch changes as turn on and off INO₂
 - 10 min between changes more than enough time

Respiratory Support Intranasal Oxygen Insufflation

Hypoxemia Increasing Cardiac Output

- Remain hypoxemic despite INO₂
- Poor lung perfusion
- Shunt fraction
 Pulmonary hypertension
 Increasing CO decrease shunt fraction?
- Fluid therapy if hypovolemic
- Dobutamine
 - Euovolemic hypoxemic
 Dramatic improvement in oxygenation
 Referral center therapy
 - Need continuous rate infusion

 Need a fluid pump avoid infusion mistakes

Treatment of Pulmonary Hypertension

- Time if within 24 hr of birth
 - o May reverse right to left shunt on own
- Deliver high oxygen flows
 - o Ideally 100% O₂
 - Intubate
 - o If not then high flow of INO₂
 - Will stimulate pulmonary vasodilation
 - Decrease pulmonary hypertension
 - Short exposure to these high levels oxygen toxicity
- NO inhalation therapy
 - Treatment with NO
 - Foal on mechanical ventilation
 - Metered dose delivery system
 - Toxic side effects require careful dosing
- Sildenophil

Pulmonary Hypertension Sidenafil Citrate

- Oral form
 - Can be used orally or rectally
- Dose 0.5-2.5 mg/kg Q4H or PRN
- Cause pulmonary arteriole vasodilation
 - o Caution: also possible vasodilation of other tissues
- Phosphodiesterase 5 inhibitor
 - Help maintain cGMP levels in vasculature
 - NO stimulates cGMP production and thus vasodilation
 - Sidenafil maintains cGMP levels and thus vasodilation
 - Maintain pulmonary vasodilation
 - o In theory great! In practice???

Hypoventilation

Achieve a normal blood pH

Not "normal Paco₂"

Appropriate hypoventilation

- Permissive hypercapnia
- Therapeutic hypercapnia

Alveolar Hypoventilation (†Pco₂)

- Central Respiratory Center depression
 - Neonatal Encephalopathy
 - Sepsis
 - Drugs phenobarbital
- Neuromuscular disease
 - o Botulism
 - Spinal cord disease
 - o Peripheral neuritis
- Respiratory fatigue
 - Primary lung disease
 - Depression
 - Decrease compliance

Alveolar Hypoventilation (†Pco₂)

- Fractured ribs
 - Pneumothorax
 - Hemothorax
 - o Pain?
- Diaphragmatic hernia
- Primary pulmonary disease
 - Atelectasis
 - Pneumonia
 - Aspiration
 - Hematogenous bacterial or viral
 - Interstitial pneumonia

Functional Residual Capacity (FRC)

Normal individuals

- Most alveoli open and ventilated
- Opposing forces
 - Rib spring opens lungs
 - Lung's elastic properties lungs collapse

Newborn foals

- Compliant chest wall
- Stiff lungs
- Lungs collapse unless held open by intercostal muscles

Progressive Atelectasis

- If foal is weak then
 - Lungs pulled close and can't maintain FRC
 - Some alveoli collapse on expiration
 - Must be reopened with each breath
 - Repeatedly close expelling surfactant
 - Without surfactant alveoli difficult to open
 - Don't reopen on next breath atelectasis
 - Decreases compliance locally
 - Pull adjacent alveoli close
 - Results increasing area of atelectasis
 - Results in decreased compliance so lungs even stiffer
 - Foal becomes fatigued
 - Process continues and situation worsens

Progressive Atelectasis

- Leads to respiratory failure
 - Initially increased work of breathing
 - But with fatigue hypoventilation
 - Hypercapnea
- Wave chest paradoxical respiration
 - o Intercostal muscles fatigue
 - As the diaphragm contracts
 - Negative pressure in the thorax
 - Chest wall pulled towards the lungs
 - Because of the fatigued intercostal muscles
 - Very inefficient ventilation
 - Movement of chest/abdomen produce a wave
- Best therapy mechanical ventilation
 - o PEEP/CPAP
 - Full recruitment ~ 20 minutes

Respiratory Acidosis

Upper airway collapse

Endotracheal tube stent

Neonatal Encephalopathy

Blunted central sensitivity

Chemical stimulants

- Caffeine
- Doxapram

Pharyngeal Collapse

Treatment of Central Hypoventilation

Doxapram

- Stimulates respiration
- o IV drip
- o **Problems**
 - Paco₂ decreases but so does pH
 - Oxygen demand of myocardium increases
 - So if they don't start breathing more problems
 - Oxygen demand of brain increases

Treatment of Central Hypoventilation

- Methylxanthines (caffeine)
 - Stimulates respiration
 - Decrease Paco₂ if acidotic
 - Dose SID/BID/PRN guided by ABG
 - Oral
 - Rectal
 - 10 mg/kg (loading dose)
 - 10 mg/kg (maintenance dose)
 - Very safe
 - Steady state levels 5-20 μg/l
 - Toxic levels >50-75 μg/l
 - But is a stimulant

Treatment of Airway Disease

- Airway disease not common/under-recognized
- Nebulization
 - o Effective?? foals seem to like it
 - o 15 ml 5% NaHCO3 + 15 ml NaCl + bronchodilator
 - Use 10 ml/treatment
 - o Bronchodilator:
 - Terbutaline (0.001-0.007 mg/kg Q4-6H)
 - Albuterol (0.001-0.01 mg/kg Q6-8H)
 - Epinephrine
- Also can add:
 - Acetylcysteine (3-4 ml 0f 10% solution Q6-8H)
 - Furosemide
- Nebulized furosemide
 - o Increases compliance
 - 1 mg/kg by nebulization
 - o Does not increase compliance if given systemically
- Other therapy
 - Coupage
 - Percussion of the thorax to aid in the removal of secretions
 - Does it work?
 - · Foals seem to like it

Positive Pressure Ventilation

- Manipulation of pulmonary gas exchange
- Increase lung volume returning normal FRC
- Decrease the work of breathing
 Relieve fatigue
 Decrease respiratory oxygen and energy utilization
 Redirect perfusion away from respiratory muscles
- Modern ventilators
 - Normal lungs easily ventilated Severe pulmonary damage – possible to be successful
 - Septic pneumonia
 - ARDS

Ventilation

