Sepsis and Septic Shock

Sepsis and Septic Shock Definitions

- Sepsis
- Septicemia
- SIRS
- Severe Sepsis
- Septic Shock
- MODS
- ARDS
- CARS

Shock

Most common cause of death

- Human SMICU
- Large animal NICU

Fatality rate

- Human medicine 20-80%
- NBC NICU 137 cases
 Sepsis without shock 17%
 Septic Shock 90%

Fatalities

- Refractory hypotension
- ARDS
- MODS

Sepsis and Septic Shock Etiology

Infectious causes

- Bacterial infections
 Gram negative pathogens 60%
 Gram positive pathogens 40%
- Viral pathogens
- Fungal pathogens

Bacteremia detected in neonate

- Sepsis < 30%
- Septic Shock > 70%

Localized infections

May never isolate causative agent Noninfectious causes

Septic Shock Pathogenesis

Septic shock

Inflammatory response (SIRS)

Immunosuppression (CARS)

Concept of

Initiation of Inflammatory Reactions

Initiators of mediator response

Gram negative pathogens

- Endotoxin
- Formyl peptides
- Exotoxins
- Proteases

Gram positive pathogens

- Exotoxins
- Enterotoxins
- Hemolysins
- Peptidoglycans
- Lipoteichoic acid

Inflammatory Cascade

Septic Shock

Pathogenesis - Cardiovascular Effects

- Heart rate increases
- Cardiac output increases
- Systemic vascular resistance low Arteriolar tone is decreases - hypotension Venus tone decreased - venous pooling
- Pulmonary vascular resistance is high Right-to-left shunt
- Despite increase cardiac output
 Tissue hypoperfusion malperfusion
 Increased lactate
 Decreased oxygen utilization

Septic Shock

Pathogenesis - Cardiovascular Effects

- Decreased sensitivity to catecholamines
 Circulating vasodilator substances
 Adrenergic receptor down-regulation
- Loss of microvascular autoregulatory mechanisms
 - Microvascular damage
- Distributive shock
 - Maldistribution of blood flow
 - Dilation of most vascular beds
 - Constriction of some

Sepsis and Septic Shock Portals of Entry

- Glt Translocation
- Respiratory tract Aspiration
- Placenta in utero
- Umbilicus

Sepsis and Septic Shock Predisposing factors

- Placentitis may be protective
- Prematurity
- Hypoxic-Ischemic disease
- Hypothermia
- Failure of Passive Transfer
- Stress
- Poor nutrition
- Poor husbandry

Sepsis and Septic Shock Localized Infections

- Pneumonia
- Enteritis
- Arthritis
- Osteomyelitis
- Meningitis
- Omphalitis
- Uveitis

Sepsis and Septic Shock Signs of Sepsis

- Fever/hypothermia
- Loss of suckle, lethargy, weakness
- Tachycardia, tachypnea
- Injection, Icterus oral, scleral
- Petechia oral, scleral, aural
- Hyperemic coronary bands
- Linear dermal necrosis
- Increased/decreased CRT
- Shock

Systemic Inflammatory Response Syndrome **SIRS**

- Over activation of the inflammatory response
- Constellation of signs

Fever or hypothermia

Leukopnea

Tachycardia, Tachypnea

Septic Shock

SIRS Damage MODS

GI tract

- Breach of the intestinal barrier
- Translocation of bacteria

Lungs

Acute Respiratory Distress Syndrome (ARDS)

CNS

- Breakdown blood brain barrier
- Inflammatory mediators
- Neurosteroid balance

Renal failure

- Decreased renal blood flow vascular damage
- Acute tubular necrosis

Recognition of SIRS Release of inflammatory mediators

- Fever
- Tachycardia
- Tachypnea
- Vasodilatation (warm skin)
- Mild controlled infection or systemic responses

Recognition of SIRS/Septic Shock

Bounding pulses

- Widen pulse pressure
- Increased cardiac output
- Increased systemic vascular resistance

Hypoperfusion

- Somnolence
- Fall asleep on feet
- Decreased urine output

Before endothelial damage/dysfunction

Intervention is most dramatic

Recognition of SIRS/Septic Shock

Shock progresses

Other signs of decreased perfusion

Cool extremities

Secondary to increase vasomotor tone

Normal or high BP

Cold progressing to ice cold legs

Recognition of SIRS/Septic Shock

- Homeostatic mechanisms fail
 - Hypotension occurs
 Pulse pressure narrows
- Legs cold
- Tachycardia
- Tachypnea
- Recumbent and nonresponsive
- Decreased cardiac output
- Hypoxia and metabolic acidosis

Sepsis and Septic Shock Therapeutic interventions

Key interventions

- Treat underlying infection
- Provide hemodynamic support
- Support during MODS and metabolic crisis
- Block proinflammatory mediators

Sepsis and Septic Shock Therapeutic interventions

- Treat underlying infection
- Anticipate bacteria infection

Antimicrobial therapy

Viral infections

Acyclovir

Hyperimmune plasma transfusion

Sepsis and Septic Shock Antimicrobials

- Penicillin
- Amikacin
- Cephalosporins
- Potentiated Penicillin
 Beta-Lactamase Inhibitor
- Imipenim

Septic Shock Hemodynamic support

Goals

- Decrease blood lactate
- Correct perfusion
- Optimize cardiac output
- Increase systemic oxygen delivery

Septic Shock

Hemodynamic support - Fluid Therapy

Crystalloids or colloids?

Crystalloid push

- Bolus 10-20 ml/kg over 10-20 minutes
 - Mini-bolus therapy?
- Reassess patient after every push??
 - Blood pressure
 - Leg temperature
 - Peripheral pulse arterial fill
 - Urine production
 - Mental status

Transfusions

- Plasma
- Whole blood

Don't fluid overload

Septic Shock Pressors/Inotropes

- Therapeutic goal
 - Increase perfusion
 Not "get good BP numbers"
- Inotropic effect most important Increase cardiac output
- Pressor effect
 - Can negate inotropic effect
 Hopefully will correct malperfusion
- Use a mix of inotropes and pressors
- Each patient pharmacokinetic experiment
- Arrhythmias tachycardia

Septic Shock Pressors/Inotropes

- Dopamine
- Dobutamine
- Norepinephrine
- Epinephrine
- Vasopressin

Septic Shock Oxygen therapy

Optimize O2 availability
Internasal O2 as soon as shock recognized

High flows 8-10 lpm

Utilize even if Pao2 appears adequate?

Ventilate early

Decrease work of breathing

25% of O2 consumption to support respiration

Cardiovascular function improves

Make respiratory failure easier to manage

Modest PEEP

Decrease work of breathing, pulmonary resistance Decrease hypoxia, need for high FIO2

Improve gas exchange with inhaled NO

Sepsis and Septic Shock Nutritional Support

Sepsis is associated with

- Hypermetabolism
- Catabolism

Hyperglycemia

- Catecholamine stimulated glycolysis
- Catecholamine mediated insulin resistance
- Insulin therapy
 - Strict glucose control

Hypoglycemia

- Often profound, refractory hypoglycemia
- Monitor blood glucose levels frequently
- IV glucose therapy

Sepsis and Septic Shock Inhibiting Toxic Mediators

Antitoxins - Antiendotoxin
Anti-interleukin-1 receptor
Antibradykinin, AntiPAF
AntiTNF, TNF antagonists, NSAIDs
Steroids, Interleukin-1 antagonists
Bradykinin antagonists, Modulate NO
Antiadhesion factors
Large clinical trials in man

- Not show improvement of survival
- Activated protein C (Xigris)

SIRS/Septic Shock Inhibiting toxic mediators

Why the failures?

Interactions are very complex

Compensatory anti-inflammatory response syndrome (CARS)

Genetic variations in mediators

Timing - interactions

SIRS/Septic Shock SIRS – CARS Balance

Effective therapy for septic shock await

- Understanding the interactions and balance
- Understanding the timing

- Fluid Expansion As Supportive Therapy
- Septic African Children
- 3,000+ children
- Saline/albumin bolus vs. maintenance fluids
- Fluid bolus increased mortality by 50%

Do fluid boluses help in septic shock?

Observe hypotension

Assume poor perfusion is bad

Assume reversing with fluids good

Questions

Do boluses actually increase organ perfusion?

How long? Does it last?

What cost?

Organ edema, gas exchange, acid base chages

- Acidosis may be protective
 - Permissive/ therapeutic hypercapnia
- Permissive/Theraputic hypoxemia
- Questions?

Is hypotension protective?

Prevent increased exposure of organs to

- Inflammatory mediators
- Other circulating toxins

- Logical/pathophysiological fallacy
 If patients with good perfusion live, transforming a patient with poor perfusion with fluids will make him live
 Analogy: Repainting the façade of a crumbling building
- If something appears obvious, not mean it's true

will not prevent its collapse

 It's not embracing new ideas that slows advances in medicine but letting go of ideas so entrenched that they have become axiomatic

Treatment of Septic Shock

- Early recognition
- Early administration of antibiotics
- Early reversal of the shock state

Aggressive fluid resuscitation

Vasoactive medications

Recent evidence

- Early recognition
- Early administration of antibiotics
 Too early distribution and connects not ideal
 Second dose effective really "delayed" Rx
- Early reversal of the shock state
 Fluid overload = poor outcome
 FEAST Study aggressive fluids = poor outcome

Recent evidence

Septic Shock – response to aggressive fluid therapy

Die in first hours

Dramatic rapid reversal

Drives the desire to repeat the same on the next case

Not die but also perfusion remains marginal

- Should these patients continue to receive aggressive fluid therapy?
- Inevitable fluid overload = negative outcomes

New Concepts

Allostatic (over)Load

Cells primitive response to prolonged hypoperfusion

- Protective response "hibernation"
 - Downregulate metabolic demands
 - Turn off normal cell functions until support returned
 - Basis for multiorgan dysfunction syndrome
 - New idea cells are waiting to return to normal
- Trying to return perfusion unsuccessful
 - Sending "all clear" signal to cells
 - May result in more severe insult
 - Better to wait until sepsis controlled
 - Before returning perfusion to normal