
Sepsis and Septic Shock

Sepsis and Septic Shock Definitions

- Sepsis
- Septicemia
- SIRS
- Severe Sepsis
- Septic Shock
- MODS
- ARDS
- CARS

Most common cause of death

- Human SMICU
- Large animal NICU

Fatality rate

- Human medicine 20-80%
- NBC NICU 137 cases Sepsis without shock - 17% Septic Shock - 90%

Fatalities

- Refractory hypotension
- ARDS
- MODS

Sepsis and Septic Shock Etiology

Infectious causes

- Bacterial infections
 Gram negative pathogens 60%
 Gram positive pathogens 40%
- Viral pathogens
- Fungal pathogens

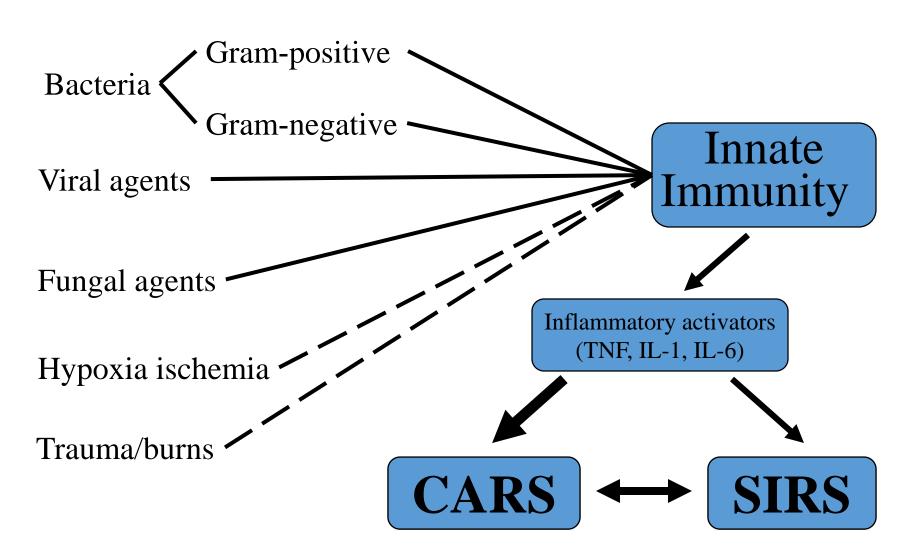
Bacteremia detected in neonate

- Sepsis < 30%
- Septic Shock > 70%

Localized infections

May never isolate causative agent Noninfectious causes

Septic Shock Pathogenesis


Septic shock

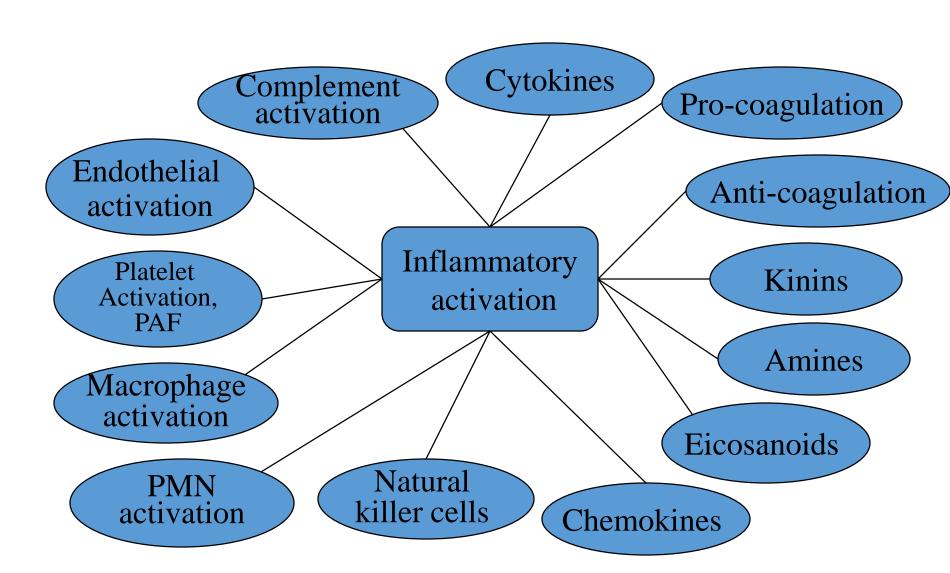
Inflammatory response (SIRS)
Immunosuppression (CARS)

Concept of Sepsis **Initiators** Innate Bacteria Endotoxin **Initiators Immunity** Direct **SIRS** Bacterial tissue **SIRS CARS** toxins damage MODS Tissue Endotoxemia Disharmony Balanced Shock Shock damage Shock Cure Death

Initiation of Inflammatory Reactions

Septic Shock Initiators of mediator response

Gram negative pathogens


- Endotoxin
- Formyl peptides
- Exotoxins
- Proteases

Gram positive pathogens

- Exotoxins
- Enterotoxins
- Hemolysins
- Peptidoglycans
- Lipoteichoic acid

Inflammatory Cascade

Septic Shock Pathogenesis - Cardiovascular effects

- Heart rate increases
- Cardiac output increases
- Systemic vascular resistance low
 Arteriolar tone is decreases hypotension
 Venus tone decreased venous pooling
- Pulmonary vascular resistance is high Right-to-left shunt
- Despite increase cardiac output
 Tissue hypoperfusion malperfusion
 Increased lactate
 Decreased oxygen utilization

Septic Shock

Pathogenesis - Cardiovascular effects

- Decreased sensitivity to catecholamines
 Circulating vasodilator substances
 Adrenergic receptor down-regulation
- Loss of microvascular autoregulatory mechanisms
 Microvascular damage
- Distributive shock
 Maldistribution of blood flow
 Dilation of most vascular beds
 Constriction of some

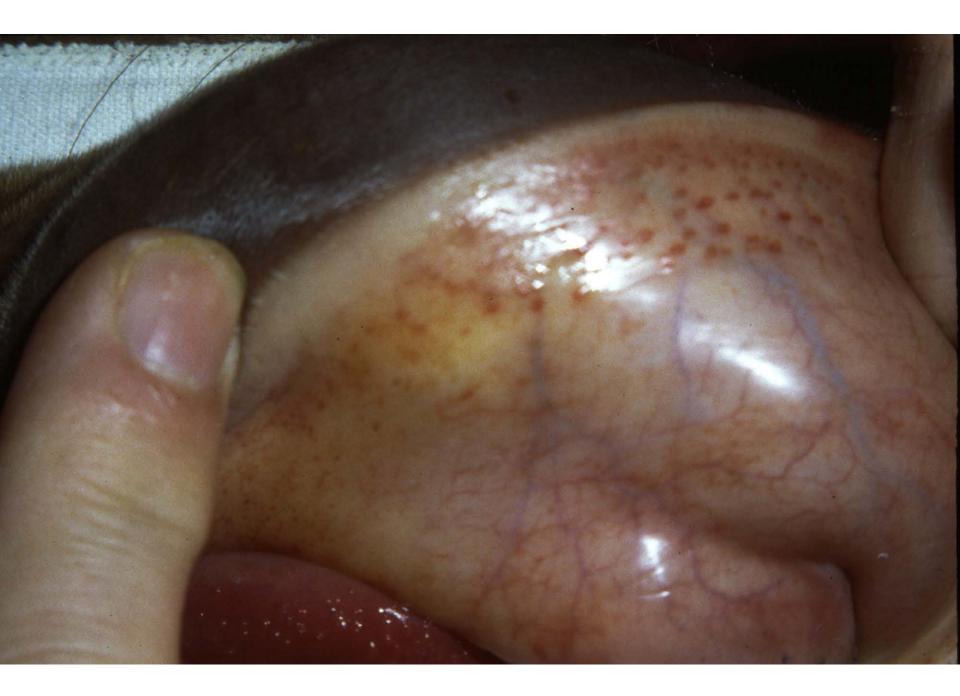
Sepsis and Septic Shock Portals of Entry

- Glt Translocation
- Respiratory tract Aspirat
- Placenta in utero
- Umbilicus

Sepsis and Septic Shock Predisposing factors

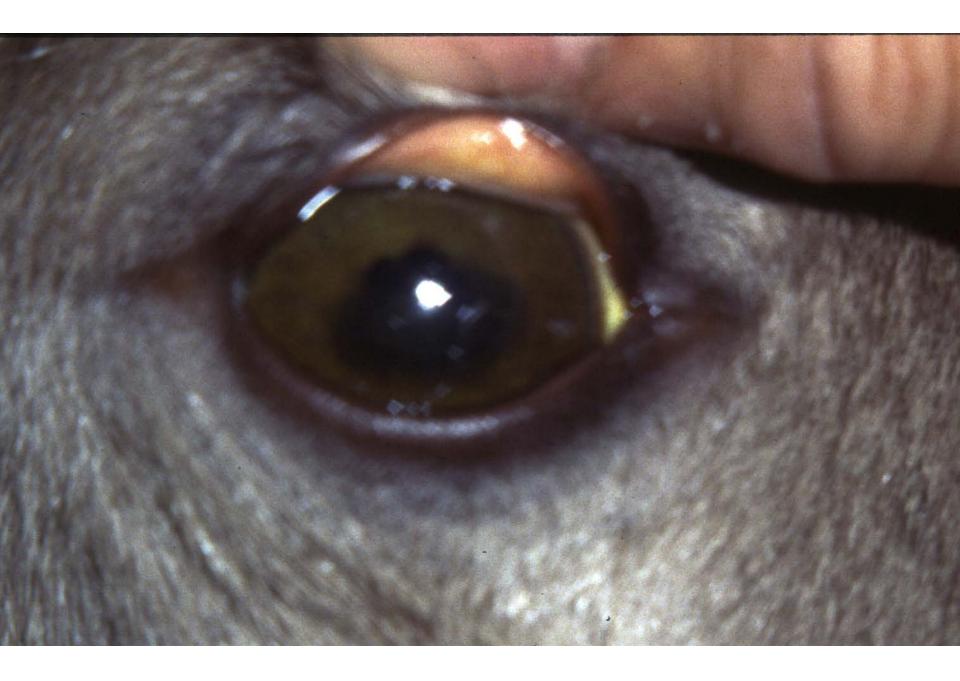
- Placentitis may be proted
- Prematurity
- Hypoxic-Ischemic disease
- Hypothermia
- FPT
- Stress
- Poor nutrition
- Poor husbandry

Sepsis and Septic Shock Localized Infections


- Pneumonia
- Enteritis
- Arthritis
- Osteomyelitis
- Meningitis
- Omphalitis
- Uveitis

Sepsis and Septic Shock Signs of Sepsis

- Fever/hypothermia
- Loss of suckle, lethargy, weakness
- Tachycardia, tachypnea
- Injection, Icterus oral, scleral
- Petechia oral, scleral, aural
- Hyperemic coronary bands
- Linear dermal necrosis
- Increased/decreased CRT
- Shock



SIRS damage MODS

GI tract

- Breach of the intestinal barrier
- Translocation of bacteria

Lungs

Acute Respiratory Distress Syndrome (ARDS)

CNS

- Breakdown blood brain barrier
- Inflammatory mediators
- Neurosteroid balance

Renal failure

- Decreased renal blood flow vascular damage
- Acute tubular necrosis

Recognition of SIRS Release of inflammatory mediators

- Fever
- Tachycardia
- Tachypnea
- Vasodilatation (warm skin)
- Mild controlled infection or systemic responses

Recognition of SIRS/Septic Shock

Bounding pulses

- Widen pulse pressure
- Increased cardiac output
- Increased systemic vascular resistance

Hypoperfusion

- Somnolence
- Fall asleep on feet
- Decreased urine output

Before endothelial damage/dysfunction

Intervention is most dramatic

Recognition of SIRS/Septic Shock

Shock progresses

Other signs of decreased perfusion

Cool extremities

Secondary to increase vasomotor tone

Normal or high BP

Cold progressing to ice cold legs

Recognition of SIRS/Septic Shock

- Homeostatic mechanisms fail Hypotension occurs Pulse pressure narrows
- Legs cold
- Tachycardia
- Tachypnea
- Recumbent and nonresponsive
- Decreased cardiac output
- Hypoxia and metabolic acidosis

Sepsis and Septic Shock Therapeutic interventions

Key interventions

- Treat underlying infection
- Provide hemodynamic support
- Support during MODS and metabolic crisis
- Block proinflammatory mediators

Sepsis and Septic Shock Therapeutic interventions

- Treat underlying infection
- Anticipate bacteria infection
 Antimicrobial therapy
- Viral infectionsAcyclovir
- Hyperimmune plasma transfusion

Sepsis and Septic Shock Antimicrobials

- Penicillin
- Amikacin
- Cephalosporins
- Ticarcillin/clavulanic acid
- •Imipenim

Septic Shock Hemodynamic support

Goals

- Clear blood lactate
- Normalize perfusion
- Optimize cardiac output
- Increase systemic oxygen delivery

Septic Shock Hemodynamic support - Fluid therapy

Crystalloids or colloids? Crystalloid push

- Bolus 20 ml/kg over 10-20 minutes
- Reassess patient after every push
 - Blood pressure
 - Leg temperature
 - Peripheral pulse arterial fill
 - Urine production
 - Mental status

Transfusions

- Plasma
- Whole blood

Don't fluid overload

Septic Shock Pressors/Inotropes

- Therapeutic goal Increase perfusion Not "get good BP numbers"
- Inotropic effect most important Increase cardiac output
- Pressor effect
 Can negate inotropic effect
 Hopefully will correct malperfusion
- Use a mix of inotropes and pressors
- Each patient pharmacokinetic experiment
- Arrhythmias tachycardia

Septic Shock Pressors/Inotropes

- Dopamine
- Dobutamine
- Norepinephrine
- Epinephrine
- Vasopressin

Septic Shock Oxygen therapy

Optimize O2 availability
Internasal O2 as soon as shock recognized
High flows 8-10 lpm
Utilize even if Pao2 appears adequate
Ventilate early
Decrease work of breathing
25% of O2 consumption to support respiration
Cardiovascular function improves
Make respiratory failure easier to manage
Modest PEEP
Decrease work of breathing, pulmonary resistance
Decrease hypoxia, need for high FIO2

Improve gas exchange with inhaled NO

Sepsis and Septic Shock Nutritional Support

Sepsis is associated with

- Hypermetabolism
- Catabolism

Hyperglycemia

- Catecholamine stimulated glycolysis
- Catecholamine mediated insulin resistance
- Insulin therapy
 - Strict glucose control

Hypoglycemia

- Often profound, refractory hypoglycemia
- Monitor blood glucose levels frequently
- IV glucose therapy

Sepsis and Septic Shock Inhibiting Toxic Mediators

Antitoxins - Antiendotoxin
Anti-interleukin-1 receptor
Antibradykinin, AntiPAF
AntiTNF, TNF antagonists, NSAIDs
Steroids, Interleukin-1 antagonists
Bradykinin antagonists, Modulate NO
Antiadhesion factors
Large clinical trials in man

- Not show improvement of survival
- Activated protein C (Xigris)

SIRS/Septic Shock Inhibiting toxic mediators

Why the failures?

Interactions are very complex

Compensatory anti-inflammatory response syndrome (CARS)

Genetic variations in mediators

Timing – interactions

SIRS/Septic Shock SIRS – CARS Balance

Effective therapy for septic shock await

- Understanding the interaction and balance
- Understanding the timing

