Neonatal Period

- Physiologic transition period
 - Full dependence on maternal physiology
 - Adaptation to independent life
 - Period transition all organ systems
 - First 3 to 4 weeks of life
Physiologic Transitions

Fetus → Neonate → Pediatric
Counterintuitive Physiology

- Different from Adult Physiology
- Fetal Physiology
Renal Response to Hypovolemia

- **Adult kidney**
 - Producing concentrated urine
 - Maintain vascular volume

- **Fetus**
 - Concentrated urine
 - Increase fetal fluid osmolarity
 - Prevent reabsorption of the fluids
 - Draw fluid from the fetus
 - Negative effect on volemia
Renal Response to Hypovolemia

- Produces dilute urine
- Decrease fetal fluid osmolarity
- Enhance reabsorption of fetal fluids
- Positive effect on volemia
Heart Rate Response To Hypoxemia

- **Adult**
 - Tachypnea and tachycardia
 - Deliver more oxygen to tissues

- **Fetus**
 - Bradycardia
 - Maximizing perfusion of fetal placenta
 - Increasing vascular tone - directing blood to vital organs
 - Increase in afterload
 - Increase cardiac work and thus oxygen demand
 - Decrease HR
 - New circulatory pattern
 - Requires no more oxygen
Species
Fluid Physiology
Fluid Physiology
Fetus/Neonate

- Unique characteristics of Fetal/Neonatal
 - Interstitium
 - Lymph flow
 - Capillary endothelial permeability
- Interstitium
 - Heterogeneous space
 - Dynamically controls its fluid content
 - Compliance 10X adult (fetal lamb)
Fluid Physiology
Fetus/Neonate

- Lymph flow
 - Volume of lymph 1 mL/kg in adult dogs
 - Thoracic duct lymph flow
 - Fetal lamb - 0.25 mL/minute/kg
 - 5x the adult rate
 - Lymph flow - subcutaneous
 - Puppies 2X adult dogs (per kg)
 - Pulmonary lymph flow
 - Newborn lambs and puppies > adults
 - Neonate - local/whole body lymph flow > adult
 - Increased interstitial volume
 - Higher capillary permeability
Fluid Physiology
Fetus/Neonate

- Capillary endothelial permeability
 - Filtration rate in fetal lambs vs adults
 - Fluid 5x
 - Proteins 15x
 - Why?
 - Poor precapillary tone
 - Higher capillary hydrostatic pressure
 - Higher filtration
 - The role of the glycocalyx?
 - Filtration related to hydrostatic pressure
 - Precapillary tone lambs – develops during 1st week
 - Doesn’t develop in a uniform manner

From: http://www.hubrecht.edu
Fluid Physiology
At Birth

- Blood pressure increases - lambs
 - Last week - increases 20%
 - During labor - increases another 18%
 - At birth - increases another 12%
- Transmitted to capillaries
- Increased transcapillary filtration
 - Poor precapillary tone
Fluid Physiology
At Birth

- Other reasons for fluid shifts
 - Direct compression of the fetus
 - Increased venous pressure
 - Vasoactive hormones
 - Arginine vasopressin
 - Norepinephrine
 - Cortisol
 - Atrial natriuretic factor
Fluid Physiology

Neonates are Born Fluid Overloaded

- **Fluid shifts**
 - From fetal fluids / maternal circulation
 - Accumulating in the fetal interstitium

- **All Neonates Are Born Fluid Overloaded**

- **Rate of loss of this fluid - species variation**
 - Foal - weeks
 - Other species
 - 10-15% body weight rapidly after birth
 - Important not to replace fluid loss
 - Poor outcomes with persistent fluid overload
Fluid Physiology
Consequences

- Response to Hemorrhage
- Response to Volume Loading
- Response to Hypoxia
Fluid Physiology
Response to Hemorrhage

- Perinatal blood loss
 - Rupture of umbilical vessels
 - Premature placental separation
 - Fetomaternal transfusion
 - Fetofetal transfusion
 - Internal bleeding
Fluid Physiology
Response to Hemorrhage

- 30% loss of blood
 - Adult dogs, cats, and sheep
 - Without fluid therapy - 24 to 48 hours
 - Fetus or neonate is shorter
 - Fetal sheep
 - 2x adults within 30 minutes
 - 100% blood volume within 3 to 4 hours
Fluid Physiology
Response to Hemorrhage

- Neonatal kittens and rabbits
 - Greater blood loss/kg before BP decrease
 - Translocation fluid and protein
 - From the interstitial space
 - Tolerate blood loss better than adults
Fluid Physiology
Response to Volume Loading

- Rapid intravascular infusions of crystalloids
 - Fetal lambs - 6 to 7% retained at 30-60 min
 - Adults - 20% to 50% retained at 30-60 min
- Rapid transfer into the interstitial space
 - High interstitial compliance
 - High capillary filtration coefficient
Fluid Physiology
Response to Volume Loading

- Fluid Overload – lack of intravascular retention
 - Adults (dogs, sheep)
 - The adult clears the fluid load hours
 - Renin
 - Vasopressin
 - Atrial natriuretic factor
Fluid Physiology
Response to Volume Loading

- Fluid Overload – lack of intravascular retention
 - Neonates (puppies, lambs)
 - 24 to 36 hr to clear fluid load
 - Volume load escapes vasculature space quickly
 - Escape volume sensors detection
 - No diuretic response
 - Urine flow rapidly returns to normal
 - Before clearing volume load
Fluid Physiology
Response to Volume Loading

- After fluid loading (fetal lambs, neonatal lambs)
 - Increase thoracic duct lymph flow
 - Increase by 3.5 times (max flow rate)
 - Angiotensin II augments lymph flow
 - Fluid therapy – rapid infusion
 - Increases CVP
 - Dramatic decrease in lymphatic flow
 - Result in edema
Thoracic Lymph Flow

- Fetal lamb
- Adult sheep

From: Brace RA et al.
Thoracic Lymph Flow

- Fetal lamb
- With large volume intravenous infusion
 - ↑↑ Lymph flow as much as 340%

- Limited by CVP

From: Brace RA et.al.
Fluid Physiology
Response to Hypoxia

- Moderate/severe hypoxemia (fetal lambs)
 - Increases arterial and venous pressures
 - Poor precapillary tone
 - Increase capillary pressure
 - Greater fluid shift interstitial space
 - Leading to excessive fluid overload
Fluid Physiology
Response to Hypoxia

- All neonates
 - Fluid overloaded at birth
- With hypoxia/asphyxia
 - Greater degree of fluid overload
- Hypovolemic with concurrent fluid overload
Renal Physiology
Renal Physiology

Renal Maturation At Birth

- Nephrogenesis is Complete, GFR adult levels in days
 - Lambs
 - Foals
 - Calves
- Nephrogenesis continues 2 + weeks
 - Puppies
- ??
 - Kitten
 - Kid
Renal Physiology

Neonatal Puppy Renal Function

- Low GRR
- Low renal plasma flow (RPF)
- Low filtration fraction (FF)
- Decreased tubular reabsorption
 - Amino acids
 - Phosphate
- Exaggerated proximal tubule natriuresis
 - Balanced by increased distal tubule Na reabsorption
- Low concentrating ability
Renal Physiology

Neonatal Cr & BUN Levels

- **BUN**
 - Lower than adults
 - Dependent on nutrition

- **Cr level at birth**
 - Cr lower than adult
 - Puppy
 - Adult level at birth
 - Infant - increase first 48 hr then decreases
 - Higher Cr than adult at birth but rapid drop
 - Foals
 - Calves
Renal Physiology
Sea of Cr - Fetal Foal

Amnionic Cr
9 - 12 mg/dl

Allantoic Cr
120 - 180 mg/dl
Renal Physiology
Renal Perfusion

- Fetus - 3-5% of cardiac output
- Birth rapid increases to 15%
 - Increase in BP
 - Renal vascular resistance
 - Increases modestly
 - But less relative to other vascular beds
Renal Physiology

Renal Perfusion

- Autoregulation
 - Normal range for age
 - “Autoregulatory range” increases as BP increases

- Puppies
 - GFR/RPF increase in parallel with
 - Increases in BP
 - Decreased in VR
 - Not changed by inhibition of angiotensin
 - Until 6 weeks old

- Foal, calf and lamb
 - GRF becomes adult-like
 - Independent of increases in arterial BP
Renal Physiology

Neonatal Vasogenic Nephropathy

- Balancing BP and renal VR
 - Vital for proper renal function

- Neonatal Vasogenic Nephropathy (NVN)
 - Abnormal levels of vasoactive substances
 - Increased sympathetic tone

- Prostaglandins in neonates
 - Afferent arteriolar vasodilation
 - Counterbalancing endogenous vasoconstrictors
 - High PG activity is physiologically necessary
 - Maintain renal perfusion
Renal Physiology
NSAID

- Greater potential for adverse renal effects
 - Reduce GFR and RBF
 - Neonatal Vasogenic Nephropathy
 - Oliguria
 - Fluid overload
- Both COX 1 and COX 2 inhibition equally bad
Renal Physiology

Hypothermia

- Rabbits decreases temperature 2 C
 - Induce renal vasoconstriction
 - Decrease GFR
- Hypothermic neonates at risk
 - Environmental temperature at birth
 - Sympathoexcitatory response
 - Response occurs before a decrease in core temperature
 - Reversible with rewarming
 - Mediated by cutaneous cold-sensitive thermoreceptors
 - Not core temperature
Renal Physiology

Nephron Development

- Number of nephrons
 - Great variation in normal individuals
 - Linear relation with body weight
- Normal and compensatory renal growth
 - Primarily proximal tubular mass
Renal Physiology
Nephron Development

- Decrease nephron numbers
 - Intrauterine growth restriction
 - Perinatal asphyxia
 - Shock
 - Exposure of the fetus to maternal administration
 - NSAIDS
 - Glucocorticoids
 - Aminoglycosides
 - Beta lactam antibiotics
Renal Physiology
Tubular Function

- Immature at birth
 - Low carrier density
 - Short tubules
- Puppies
 - Urine specific gravity
 - Birth is limited (1.006 to 1.017)
 - Adult levels 12 weeks (8 weeks kittens)
- Protein, glucose, amino acids in the urine
 - Neonate
 - Adult levels by 3 weeks
Renal Physiology
Tubular Function

- Large animal neonates urine specific gravity
 - Broad range within 24 hours
 - 1.001 to > 1.035
 - Herbivore Milk diet
 - Usg < 1.004
- Foal
 - First urine
 - 12 hours, Usg > 1.035
 - 24 hours Usg < 1.004
Renal Physiology
Sodium Story

- Positive sodium balance needed for growth
 - Increase interstitium
 - Bone growth
- Fresh milk is sodium poor
 - Mare’s milk – 9 to 14 mEq/L
 - 20% milk diet – 1.9mEq/kg/day
 - Growth requirement 1 mEq/kg/day
Renal Physiology
Sodium Story

- Immature kidney Na reabsorption
 - With sodium loading in dogs
 - Proximal tubule - 64% adult dog: 48% puppy
 - Distal tubule - 26% adult dog: 51% puppy
 - Total - 91% adult dog: 98% puppy
- Upregulation distal tubular Na transporters
Renal Physiology
Sodium Story

- Slow to respond to Na load
 - Species dependent
 - Predisposes to Na overload
 - Problem in critically ill neonatal foals

- Crystalloid fluid therapy
 - Na overload
 - Fluid overload
 - Limited urine dilution
 - Puppies
 - Neonatal Vasogenic Nephropathy
Cardiovascular Physiology
Cardiovascular Physiology At Birth

- Increase in
 - Arterial blood pressure
 - Heart rate
 - Cardiac output
 - 4X higher than adult (lamb)

- Regional changes blood flow
 - Initially retains low-resistance–high-flow system
 - Renal 3% to 15% at birth
Cardiovascular Physiology

Neonatal Changes

- Puppies
 - SBP 61±5 birth to 139±4 at 4 wk
 - HR 204±3 at birth to 123±6 at 4 wk

- Large animal neonates
 - Studies confounded by restrain artifacts
 - Clinical experience – low BP/VR to high BP/VR
 - Most make a rapid transition
 - A few neonates retain the low BP/VR maintain excellent perfusion
 - Critically ill neonates more likely delay transition
Cardiovascular Physiology

Neonates

- BP cannot be used as surrogate for perfusion
- Absolute BP numbers - Dangerous therapeutic goals
Cardiovascular Physiology
Autonomic influence heart rate

- Puppies, kittens
 - Sympathetic innervation functionally incomplete
 - Puppies - less chronotropic response
 - Lack of vagal tone - minimal response to atropine
 - Puppies < 14 days
 - Kittens < 11 days
 - Atropine not effective in neonatal resuscitation
- Clinical observations in foals, calves, crias, lambs and kids
 - Autonomic cardiac control at birth
 - Calves, crias
 - Intubation may induce dangerous bradycardia
Cardiovascular Physiology

Resetting baroreflex

- Baroreflex sensitivity changes with maturation
 - Resets - shifts toward higher pressures
 - Shifts during fetal life
 - Shifts immediately after birth
 - Shifts during postnatal period
 - Paralleling BP increases

- Resetting complex
 - Peripheral resetting
 - Level of the baroreceptor
 - Central resetting
 - Sympathetic or parasympathetic activity
Cardiovascular Physiology
Resetting baroreflex

- Puppies
 - Baroreceptor reflex absent until 4 days of age
- Large animal neonates
 - Most make rapid transition
 - Some critically ill neonates
 - Retain the fetal baroreceptor set point
 - Apparent inappropriate bradycardia
 - Low BP
 - But good perfusion
Cardiovascular Physiology
Autonomic Dysregulation

- Critical neonates
 - Transient but requires careful management
 - Not respond adrenergic support
 - Not vagally mediated
 - Not respond to atropine
 - May respond to oxygen therapy
Cardiovascular Physiology
Ductus Arteriosus, Foramen Ovale

- Functional closure
 - 50% by 24 hr
 - 90% by 48 hr
- Anatomic closure
 - Within weeks
 - Until they – powerful survival tool
Cardiovascular Physiology
Ductus Arteriosus, Foramen Ovale

- Pulmonary hypertension
 - Hypoxemia
 - Sepsis
- Consequences of Pulmonary hypertension
 - Adult – Hypoxia Ischemia
 - Neonate – Hypoxia without ischemia
Gastrointestinal Physiology
Gastrointestinal Physiology Development

- Small intestine - first 10 days of life
 - Increases 80% in length
 - Increase 30% in diameter
 - Maturation is incomplete until after weaning
- Macromolecules transport
 - IgG, cytokines, trophic hormones, others
 - Gastric acid secretion not occur during transport period
 - At least 24 hours
 - Rat - acid secretion not occur until weaning
 - 18 days after birth
Gastrointestinal Physiology
Development

- Macromolecules transport
 - Fetal intestinal epithelial cells
 - Transport macromolecules
 - Some species neonatal epithelial cells
 - Life span 3 weeks
 - Lambs - 5 days after birth
 - Calves - 14 days
 - Pigglets - 21 day
 - Transport slows by 6-12 days
- Nonselective pinocytosis some species
 - Reason for frequent translocation of bacteria?
Gastrointestinal Physiology

Development

- Trophic signals
 - Luminal
 - Amnionic fluid
 - Colostrum
 - Fresh milk
 - Food
 - Nutrients
 - Microbes
Gastrointestinal Physiology
Development

- Trophic signals
 - Circulation/local
 - Peptide growth factors
 - Gut origin peptide hormones
 - Steroid and thyroid hormones
 - Neural inputs
 - CNS
 - Enteric Nervous System
Gastrointestinal Physiology Development

- Importance of luminal nutrition
 - "Trophic feeding"
 - Growth and metabolism of mucosal cells
 - Release of local growth factors
 - Release of gut hormones
 - Activate neural pathways (ENS)
Gastrointestinal Physiology
Development

- Fresh colostrum
- Fresh milk
- Mucosal barrier and immune function
- Establish normal flora
 - Flora is trophic
 - Discourages establishment of pathogens
Confused?