NEONATAL PHYSIOLOGY

JON PALMER, VMD, DACVIM NEW BOLTON CENTER, KENNETT SQUARE, PENNSYLVANIA

Neonatal Period

Physiologic transition period

- Full dependence on maternal physiology
- Adaptation to independent life
- Period transition all organ systems
 - ► First 3 to 4 weeks of life

Physiologic Transitions

Counterintuitive Physiology

Different from Adult Physiology

Fetal Physiology

Renal Response to Hypovolemia

Adult kidney

- Producing concentrated urine
- Maintain vascular volume
- Fetus
 - Concentrated urine
 - Increase fetal fluid osmolarity
 - Prevent reabsorption of the fluids
 - Draw fluid from the fetus
 - ► Negative effect on volemia

Renal Response to Hypovolemia

Produces dilute urine

Decrease fetal fluid osmolarity

Enhance reabsorption of fetal fluids

Positive effect on volemia

Heart Rate Response To Hypoxemia

Adult

- Tachypnea and tachycardia
- Deliver more oxygen to tissues
- Fetus
 - Bradycardia
 - Maximizing perfusion of fetal placenta
 - Increasing vascular tone directing blood to vital organs
 - Increase in afterload
 - Increase cardiac work and thus oxygen demand
 - ► Decrease HR
 - ► New circulatory pattern
 - Requires no more oxygen

Species

Fluid Physiology

Fluid Physiology Fetus/Neonate

- Unique characteristics of Fetal/ Neonatal
 - Interstitium
 - Lymph flow
 - Capillary endothelial permeability
- Interstitium
 - Heterogeneous space
 - Dynamically controls its fluid content
 - Compliance 10X adult (fetal lamb)

Fluid Physiology Fetus/Neonate

- ► Lymph flow
 - Volume of lymph 1 mL/kg in adult dogs
 - Thoracic duct lymph flow
 - ▶ Fetal lamb 0.25 mL/minute/kg
 - ▶ 5x the adult rate
 - Lymph flow subcutaneous
 - Puppies 2X adult dogs (per kg)
 - Pulmonary lymph flow
 - Newborn lambs and puppies > adults
 - Neonate local/ whole body lymph flow > adult
 - Increased interstitial volume
 - Higher capillary permeability

Fluid Physiology Fetus/Neonate

- Capillary endothelial permeability
 - Filtration rate in fetal lambs vs adults
 - ► Fluid 5x
 - ▶ Proteins 15x
 - ► Why?
 - Poor precapillary tone
 - Higher capillary hydrostatic pressure
 - ► Higher filtration
 - ► The role of the glycocalyx?
 - Filtration related to hydrostatic pressure
 - Precapillary tone lambs develops during 1st week
 - Doesn't develop in a uniform manner

From: http://www.hubrecht.edu

Fluid Physiology At Birth

- Blood pressure increases lambs
 - ► Last weeks increases 20%
 - During labor increases another 18%
 - At birth increases another 12%
- Transmitted to capillaries
- Increased transcapillary filtration
 - Poor precapillary tone

Fluid Physiology At Birth

- Other reasons for fluid shifts
 - Direct compression of the fetus
 - Increased venous pressure
 - Vasoactive hormones
 - Arginine vasopressin
 - ► Norepinephrine
 - Cortisol
 - ► Atrial natriuretic factor

Fluid Physiology Neonates are Born Fluid Overloaded

► Fluid shifts

- From fetal fluids / maternal circulation
- Accumulating in the fetal interstitium
- All Neonates Are Born Fluid Overloaded
- Rate of loss of this fluid species variation
 - ► Foal weeks
 - Other species
 - 10-15% body weight rapidly after birth
 - Important not to replace fluid loss
 - Poor outcomes with persistent fluid overload

Fluid Physiology Consequences

Response to Hemorrhage

Response to Volume Loading

Response to Hypoxia

Fluid Physiology Response to Hemorrhage

Perinatal blood loss

- Rupture of umbilical vessels
- Premature placental separation
- Fetomaternal transfusion
- Fetofetal transfusion
- Internal bleeding

Fluid Physiology Response to Hemorrhage

► 30% loss of blood

- Adult dogs, cats, and sheep
 - ► With out fluid therapy 24 to 48 hours
- Fetus or neonate is shorter
 - ► Fetal sheep
 - 2x adults within 30 minutes
 - ▶ 100% blood volume within 3 to 4 hours

Fluid Physiology Response to Hemorrhage

Neonatal kittens and rabbits
 Greater blood loss /kg before BP decrease
 Translocation fluid and protein
 From the interstitial space
 Tolerate blood loss better than adults

Rapid intravascular infusions crystalloids
 Fetal lambs - 6 to 7% retained at 30-60 min
 Adults - 20% to 50% retained at 30-60 min
 Rapid transfer into the interstitial space
 High interstitial compliance
 High capillary filtration coefficient

Fluid Overload – lack of intravascular retention

- Adults (dogs, sheep)
 - The adult clears the fluid load hours
 - Renin
 - ► Vasopressin
 - ► Atrial natriuretic factor

Fluid Overload – lack of intravascular retention

- Neonates (puppies, lambs)
 - 24 to 36 hr to clear fluid load
 - Volume load escapes vasculature space quickly
 - Escape volume sensors detection
 - ► No diuretic response
 - Urine flow rapidly returns to normal
 - Before clearing volume load

After fluid loading (fetal lambs, neonatal lambs)

- Increase thoracic duct lymph flow
 - Increase by 3.5 times (max flow rate)
 - Angiotensin II augments lymph flow
- Fluid therapy rapid infusion
 - ► Increases CVP
 - Dramatic decrease in lymphatic flow
 - Result in edema

Thoracic Lymph Flow

► Fetal lamb

Adult sheep

From: Brace RA et.al.

Thoracic Lymph Flow

Fetal lamb

- With large volume intravenous infusion
 - At Lymph flow as much as 340%
 - ► Limited by CVP

From: Brace RA et.al.

Fluid Physiology Response to Hypoxia

Moderate/severe hypoxemia (fetal lambs)

- Increases arterial and venous pressures
- Poor precapillary tone
 - Increase capillary pressure
- Greater fluid shift interstitial space
- Leading to excessive fluid overload

Fluid Physiology Response to Hypoxia

All neonates

Fluid overloaded at birth

With hypoxia/asphyxia

Greater degree of fluid overload

Hypovolemic with concurrent fluid overload

Renal Physiology

Renal Physiology Renal Maturation At Birth

- Nephrogenesis is Complete, GFR adult levels in days
 - ► Lambs
 - ► Foals
 - Calves
- Nephrogenesis continues 2 + weeks
 - Puppies
- ??Kitten
 - ► Kid

Renal Physiology Neonatal Puppy Renal Function

- ► Low GRR
- ► Low renal plasma flow (RPF)
- Low filtration fraction (FF)
- Decreased tubular reabsorption
 - Amino acids
 - Phosphate
- Exaggerated proximal tubule natriuresis
 - Balanced by increased distal tubule Na reabsorption
- Low concentrating ability

Renal Physiology Neonatal Cr & BUN Levels

- ► BUN
 - Lower than adults
 - Dependent on nutrition
- Cr level at birth
 - Cr lower than adult
 - Puppy
 - Adult level at birth
 - ► Infant increase first 48 hr then decreases
 - Higher Cr than adult at birth but rapid drop
 - ► Foals
 - ► Calves

Renal Physiology Sea of Cr – Fetal Foal

Amnionic Cr 9 – 12 mg/dl

Allantoic Cr 120 – 180 mg/dl

Renal Physiology Renal Perfusion

Fetus - 3-5% of cardiac output

Birth rapid increases to 15%

- ► Increase in BP
- Renal vascular resistance
 - Increases modestly
 - But less relative to other vascular beds

Renal Physiology Renal Perfusion

Autoregulation

- Normal range for age
- "Autoregulatory range" increases as BP increases
- Puppies
 - ► GFR/RPF increase in parallel with
 - ► Increases in BP
 - Decreased in VR
 - Not changed by inhibition of angiotensin
 - Until 6 weeks old
- Foal, calf and lamb
 - ► GRF becomes adult-like
 - Independent of increases in arterial BP

Renal Physiology Neonatal Vasogenic Nephropathy

- Balancing BP and renal VR
 - Vital for proper renal function
- Neonatal Vasogenic Nephropathy (NVN)
 - Abnormal levels of vasoactive substances
 - Increased sympathetic tone
- Prostaglandins in neonates
 - Afferent arteriolar vasodilation
 - Counterbalancing endogenous vasoconstrictors
 - High PG activity is physiologically necessary
 - ► Maintain renal perfusion

Renal Physiology NSAID

Greater potential for adverse renal effects

- Reduce GFR and RBF
- Neonatal Vasogenic Nephropathy
- Oliguria
- Fluid overload
- Both COX 1 and COX 2 inhibition equally bad

Renal Physiology Hypothermia

- Rabbits decreases temperature 2 C
 - Induce renal vasoconstriction
 - Decrease GFR
- ► Hypothermic neonates at risk
 - Environmental temperature at birth
 - Sympathoexcitatory response
 - Response occurs before a decrease in core temperature
 - Reversible with rewarming
 - Mediated by cutaneous cold-sensitive thermoreceptors
 - ► Not core temperature

Renal Physiology Nephron Development

Number of nephrons

- Great variation in normal individuals
- Linear relation with body weight
- Normal and compensatory renal growth
 - Primarily proximal tubular mass

Renal Physiology Nephron Development

Decrease nephron numbers

- Intrauterine growth restriction
- Perinatal asphyxia
- Shock
- Exposure of the fetus to maternal administration
 - ► NSAIDS
 - Glucocorticoids
 - Aminoglycosides
 - Beta lactam antibiotics

Renal Physiology Tubular Function

- Immature at birth
 - Low carrier density
 - Short tubules
- Puppies
 - Urine specific gravity
 - ▶ Birth is limited (1.006 to 1.017)
 - Adult levels 12 weeks (8 weeks kittens)
 - Protein, glucose, amino acids in the urine
 - ► Neonate
 - Adult levels by 3 weeks

Renal Physiology Tubular Function

Large animal neonates urine specific gravity

- Broad range within 24 hours
- ▶ 1.001 to > 1.035
- ► Herbivore Milk diet
 - ► Usg < 1.004

► Foal

- ► First urine
 - ▶ 12 hours, Usg > 1.035
 - ► 24 hours Usg < 1.004

Renal Physiology Sodium Story

Positive sodium balance needed for growth

- Increase interstitium
- Bone growth
- Fresh milk is sodium poor
 - Mare's milk 9 to 14 mEq/L
 - 20% milk diet 1.9mEq/kg/day
 - Growth requirement 1 mEq/kg/day

Renal Physiology Sodium Story

Immature kidney Na reabsorption

- With sodium loading in dogs
 - Proximal tubule 64% adult dog: 48% puppy
 - Distal tubule 26% adult dog: 51% puppy
 - ► Total 91% adult dog: 98% puppy
- Upregulation distal tubular Na transporters

Renal Physiology Sodium Story

- Slow to respond to Na load
 - Species dependent
 - Predisposes to Na overload
 - Problem in critically ill neonatal foals
- Crystalloid fluid therapy
 - Na overload
 - Fluid overload
 - Limited urine dilution
 - Puppies
 - Neonatal Vasogenic Nephropathy

Cardiovascular Physiology

Cardiovascular Physiology At Birth

- Increase in
 - Arterial blood pressure
 - ► Heart rate
 - Cardiac output
 - 4X higher than adult (lamb)
- Regional changes blood flow
 - Initially retains low-resistance-high-flow system
 - ▶ Renal 3% to 15% at birth

Cardiovascular Physiology Neonatal Changes

Puppies

- > SBP 61 \pm 5 birth to 139 \pm 4 at 4 wk
- HR 204±3 at birth to 123±6 at 4 wk
- Large animal neonates
 - Studies confounded by restrain artifacts
 - Clinical experience low BP/VR to high BP/VR
 - Most make a rapid transition
 - ► A few neonates retain the low BP/VR maintain excellent perfusion
 - Critically ill neonates more likely delay transition

Cardiovascular Physiology Neonates

BP cannot be used as surrogate for perfusion

Absolute BP numbers - Dangerous therapeutic goals

Cardiovascular Physiology Autonomic influence heart rate

- Puppies, kittens
 - Sympathetic innervation functionally incomplete
 - Puppies less chronotropic response
 - Lack of vagal tone minimal response to atropine
 - Puppies < 14 days</p>
 - ► Kittens < 11 days
 - Atropine not effective in neonatal resuscitation
- Clinical observations in foals, calves, crias, lambs and kids
 - Autonomic cardiac control at birth
 - Calves, crias
 - Intubation my induce dangerous bradycardia

Cardiovascular Physiology Resetting baroreflex

- Baroreflex sensitivity changes with maturation
 - Resets shifts toward higher pressures
 - Shifts during fetal life
 - > Shifts immediately after birth
 - Shifts during postnatal period
 - Paralleling BP increases
- Resetting complex
 - Peripheral resetting
 - Level of the baroreceptor
 - Central resetting
 - Sympathetic or parasympathetic activity

Cardiovascular Physiology Resetting baroreflex

- Puppies
 - Baroreceptor reflex absent until 4 days of age
- Large animal neonates
 - Most make rapid transition
 - Some critically ill neonates
 - Retain the fetal baroreceptor set point
 - > Apparent inappropriate bradycardia
 - ➢ Low BP
 - But good perfusion

Cardiovascular Physiology Autonomic Dysregulation

Critical neonates

- > Transient but requires careful management
- Not respond adrenergic support
- Not vagally mediated
 - Not respond to atropine
- May respond to oxygen therapy

Cardiovascular Physiology Ductus Arteriosus, Foramen Ovale

Functional closure

- > 50% by 24 hr
- > 90% by 48 hr
- Anatomic closure
 - > Within weeks
 - > Until they powerful survival tool

Cardiovascular Physiology Ductus Arteriosus, Foramen Ovale

- Pulmonary hypertension
 - Hypoxemia
 - Sepsis

- Consequences of Pulmonary hypertension
 - > Adult Hypoxia Ischemia
 - Neonate Hypoxia without ischemia

Gastrointestinal Physiology

- Small intestine first 10 days of life
 - Increases 80% in length
 - Increase 30% in diameter
 - Maturation is incomplete until after weaning
- Macromolecules transport
 - > IgG, cytokines, trophic hormones, others
 - Gastric acid secretion not occur during transport period
 - > At least 24 hours
 - > Rat acid secretion not occur until weaning
 - > 18 days after birth

- Macromolecules transport
 - Fetal intestinal epithelial cells
 - Transport macromolecules
 - > Some species neonatal epithelial cells
 - Life span 3 weeks
 - Lambs 5 days after birth
 - Calves 14 days
 - Pigglets 21 day
 - Transport slows by 6-12 days
 - Nonselective pinocytosis some species
 - Reason for frequent translocation of bacteria?

Trophic signals ► Luminal > Amnionic fluid ≻Colostrum ➤ Fresh milk ► Food > Nutrients > Microbes

- Trophic signals
 Circulation/local
 Peptide growth factors
 Gut origin peptide hormones
 Steroid and thyroid hormones
 - Neural inputs
 - ≻CNS
 - Enteric Nervous System

Importance of luminal nutrition

- "Trophic feeding"
 - Growth and metabolism of mucosal cells
 - Release of local growth factors
 - Release of gut hormones
 - > Activate neural pathways (ENS)

- Fresh colostrum
- ➤ Fresh milk
- > Mucosal barrier and immune function
- Establish normal flora
 - Flora is trophic
 - Discourages establishment of pathogens

Confused?

