Electrolyte Abnormalities in Neonates

Jon Palmer, VMD, DACVIM
Director of Neonatal/Perinatal Programs
Graham French Neonatal Section, Connelly Intensive Care Unit
New Bolton Center, University of Pennsylvania
Electrolyte abnormalities
Critically ill neonates

- Frequently occur
- Usually mild disturbances can be life-threatening
- Epiphenomena
 Reflecting organ dysfunction
 - Gastrointestinal
 - Renal
 - Endocrine
 Reflecting global insult
- Iatrogenic
 Fluid therapy errors
 Feeding mishaps
- Fetal to neonatal physiology transition
Electrolyte Abnormalities

- Sodium/Water Balance
- Hyponatremia/Hypernatremia
- Hypokalemia/Hyperkalemia
- Hypocalcemia/Hypercalcemia
- Hypomagnesemia/Hypermagnesemia
Sodium/Water Balance

• Transition from fetal physiology
 Late term fetus
 High F_{xNa}
 Transition – to low F_{xNa}
 • Most species during 1st day
 • Fetal foal - before birth

• Sodium conserving mode
 Na requirement for growth
 • Bone growth
 • ↑ body mass
 Increase in interstitial space
 Milk diet
 • Fresh milk is sodium poor
 9-15 mEq/l
Sodium/Water Balance

Sodium Conservation

- Neonatal kidney less able to excrete Na load rapidly
- ↓ GFR
- Glomerulotubular balance
 Absorption Na in proximal tubule balanced with snGFR
 Adult – distal tubule modulated based on Na balance
 Neonate – both proximal and distal tubules
 Distal important compensatory mechanism
 - Retention Na for growth
 - No autoregulation GFR at neonatal BP
 - Disruption Na reabsorption capacity proximal tubules
 - Hormones – cortisol, ANP
 - Hypoxia
 - Increased arterial pressure
- Compensatory mechanism
 Compensate for uncertain proximal tubule function
 Does not change with Na intake
 Limits neonates ability to excrete Na loads rapidly
Sodium/Water Balance

Sodium Overload

- Sodium containing intravenous fluids
 6-7.25 mEq Na/kg/day
 Mare’s milk – 1.8 mEq Na/kg/day
 3-4 X normal Na

- Sodium overloading
 Expansion of the extracellular fluid space
 Sodium fractional excretion will remain low

- Difficulty dealing with volume loading
Sodium/Water Balance

Sodium Overload

- Confounding influences
 - Glucose diuresis
 - Fluid diuresis
 - Na containing fluid boluses
 - Diuretic induced diuresis
 - Renal tubular disease
 - Hypoxia

- Inability to rapidly excrete a volume load
 - Fluid shifts – intravascular:interstitial space
 - Neonate’s inability excrete excess volume
 - Neonates Na conservation
Hyponatremia
Hyponatremia

- Spurious hyponatremia
- Dilutional hyponatremia
- Depletional hyponatremia
- Redistribution hyponatremia
Hyponatremia

- Na stores determines ECF volume
- Na concentration (osmolality) – water balance
- Tonicity
 - Hypotonic hyponatremia
 - Water excess relative to Na stores
 - Na stores
 - Decreased
 - Normal
 - Increased
 - Isotonic hyponatremia
 - Hypertonic hyponatremia
Spurious Hyponatremia

- Normal plasma sodium concentration
- Laboratory reports a low concentration

Presence of interfering substances
- Lipids
- Artificially dilutes sample

Mistakes in sampling
- Venipuncture site distal to a ↓Na drip
- Sample is taken from a catheter
 - Infusion of a ↓Na solution
 - Insufficient dead space clearing
Dilutional Hyponatremia

- Lack of balance – fluid intake/urine output
- Loss of integrity of the urinary system
 - Ruptured bladder
 - Ruptured/necrotic urachus
 - Fenestrated ureters
- Renal failure
- Failed/delayed renal transition
 - Fetal to neonatal physiology
- Water overload
 - Management mistakes
 - Dilute milk replacer
 - Excessive water enemas (retained)
 - Fluid therapy errors (Na wasting renal syndromes)
 - Syndrome of inappropriate antidiuresis (SIA)
Dilutional Hyponatremia

- Most common form of hyponatremia in neonates
- Only occurs with intake of hyponatremic fluid
 - Fresh milk
 - Hyponatremic rehydration formulas
 - Dextrose in water or half strength saline
- Not with isotonic Na containing fluids
 - Normisol-R, Lactated Ringers, Plasmalyte
 - Less marked on milk replacer than fresh milk
Hyponatremia

Syndrome of Inappropriate Antidiuresis (SIAD)

• Synonym: SIADH
 Syndrome of Inappropriate Antidiuretic Hormone Secretion

• Hyponatremia secondary to
 Inappropriate reabsorption of water from urine

• Diagnosis
 High urine osmolarity
 Hyposmolar hyponatremia - plasma
 Normal renal function
 Normal adrenal function
 Euvolemia

• Can have excessive renal sodium excretion
 Often absent in the neonate
 Low sodium intake
Hyponatremia

 Syndrome of Inappropriate Antidiuresis (SIAD)

• Clinical syndrome
 Sudden decrease in urine output
 High urine specific gravity
 Weight gain
 • 10-15% of body weight overnight
 No edema
 Decreasing plasma sodium concentration
Hyponatremia

Syndrome of Inappropriate Antidiuresis (SIAD)

- **SIADH**
 - Inappropriate vasopressin release
 - Erratic and unpredictable release vasopressin
 - Reset of the osmostat
 - Threshold for release is lowered
 - Vasopressin release not fully suppressed at low osmolarity
 - But normal at higher osmolarity
 - **Receptor abnormality (vasopressin release normal)**
 - Hypersensitive receptors
 - Receptors continue to respond
 - After vasopressin levels decrease
 - Hypovasopressinemic antidiuresis
Hyponatremia

Syndrome of Inappropriate Antidiuresis (SIAD)

- SIAD not SIADH
 - High urine osmolarity
 - Hyposmolar hyponatremia
 - Hypovolemia
 - Appropriate vasopressin release
 - Defense of volemia

- Diuretics
- Abnormal adrenal function
- Abnormal renal function
Depletional Hyponatremia

- Na loss > water
- Diarrhea
 - Excessive sodium loss in feces
 - Rehydration with Na poor fluids
 - Fresh/frozen milk
 - Fresh water
- Renal sodium wasting
 - Tubular disease
 - Use of diuretics
 - Endocrine disturbances
 - Rehydration with Na poor fluids
 - Fresh/frozen milk
 - Fresh water
Redistribution Hyponatremia

- Low sodium concentration
 - Osmolarity normal
 - Isosmotic hyponatremia
 - Hyperosmotic hyponatremia
- Other osmotically active particles present
 - Redistribute fluid from intracellular space
 - Appropriate decrease Na concentration
 - Hyperglycemia
 - $Na_{corrected} = Na_{measured} + [(Glu - 90)/36]$
 - Iatrogenic addition of osmoles
 - Mannitol
 - Secondary to sick cell syndrome
Hyponatremia

Sick Cell Syndrome

- Critically ill patients
- Cellular insult
- Loss of cell wall integrity
- Solutes leak
 - Fluid follows
 - Dilution of extracellular sodium levels
Hyponatremia

Sick Cell Syndrome

- Redistribution hyponatremia

“Osmolar Gap”

\[
\text{Osm}_{\text{calc}} = 2\times \text{Na} \, (\text{mEq/l}) + \text{urea} \, (\text{mg/dl})/2.8 + \text{glucose} \, (\text{mg/dl})/18
\]

\[
\text{Osm}_{\text{Gap}} = \text{Osm}_{\text{measured}} - \text{Osm}_{\text{calc}}
\]

- Unmeasured osmolites

\[
\text{Osm}_{\text{Gap}} > 10 \, \text{mOsm}
\]

- Multiorgan dysfunction (MODS)

- ↑ fatality rate in ICU patients
Hyponatremia

Sick Cell Syndrome

• Which solutes??

Traditional

• Organic phosphates
• Pyruvate
• Lactate
• Amino acids

Recent studies

• Failed to identify major components
Hypotonic Hyponatremia Treatment

- Recognize cause
 Don’t treat spurious, redistribution hyponatremia

- Symptomatic – euvolemia/hypervolemia, with concentrated urine
 Hypertonic saline
 Furosemide – limit volume expansion
 Stop water intake

- Symptomatic – hypovolemia
 Isotonic saline

- Mild symptomatic – dilute urine
 Evaporative losses only
Hypotonic Hyponatremia

Treatment

• Treat until signs subside
 Increase serum Na 3-7 mmol/l

• Avoid osmotic demyelination
 Don’t increase Na faster than 8-10 mmol/day
 • Can increase 1 mmol/hr 1st few hrs then slow

• Asymptomatic – slow rise
 Begin with half strength fluids after urinary tact
 repair to slow rise
 Often difficult to control rate of rise
 Faster onset (hours) – faster correction tolerated
 Some question risk of osmotic demyelination
 Water restriction may be all that is needed
Hypotonic Hyponatremia

Estimate Effect of Infusate

For each liter given
Change in serum [Na] = \frac{(\text{Infusate Na} + \text{Infusate K}) - \text{serum Na}}{\text{Total body water} + 1}

Total body water
- early neonate = 0.75 \times \text{body wt}
- pediatric = 0.6 \times \text{body wt}
- adult = 0.5-0.6 \times \text{body wt}
- geriatric = 0.45-0.5 \times \text{body wt}
Hypernatremia

- Uncommon
- Deficit of water relative to Na stores
- Hypertonic hyperosmolality
- Causes of hypernatremia
 - Spurious
 - Excessive free water loss
 - Pure water loss
 - Hypotonic fluid loss
 - Hyperosmotic intake
 - Iatrogenic
Spurious hypernatremia

- Sampling errors
 - Blood samples from the intravenous catheter
 - Not large enough presample
 - Sample contamination with saline
Hypernatremia
Increased free water loss

Increased insensible loss
- Increased respiratory rate
- Low humidity
- High body temperature
- External warming
 - Radiant heat
 - Hot air heat

Increased insensible loss with limited intake
- Hot weather
- Neonate unable to nurse
 - Lack opportunity
 - HIE
Hypernatremia

Increased free water loss

- Water loss
 - Diabetes insipidus
 - Unusual because of neonate’s diet
- Hypotonic fluid loss
 - Furosemide
 - Osmotic diuresis
 - Glucosuria
 - Mannitol
 - Renal disease
 - Diarrhea
 - Excessive sweating
Hypernatremia
Hyperosmotic Intake

- High sodium maternal milk
 Excessive sodium intake relative to free water
- Iatrogenic mishaps
 Improperly mixed electrolyte solutions
 - Without the opportunity/ability to drink fresh water
 Improperly mixed milk replacers
 - All powdered milk replacers are sodium rich
- Use of hypernatremic intravenous fluids solutions
 - 5% sodium bicarbonate
 - Hypertonic saline
- Use of saline in oxygen humidifiers
- Hypertonic enemas (retained)
Hypernatremia Treatment

- Recognize cause
 Eliminate/manage underlying problem
- If developed acutely (hours)
 Can be corrected over hours (↓Na 1 mmol/hr)
 Usually acute sodium loading
- If developed slowly (over days)
 Intracellular accumulation organic osmolytes
 Correct slowly to avoid cerebral cellular edema
 ↓Na < 0.5 mmol/hr (target ↓Na 10 mmol/day)
- Oral fluid therapy
 Na and K in milk
Hypernatremia

Estimate Effect of Infusate

For each liter given
Change in serum [Na] = \[
\frac{(\text{Infusate Na} + \text{Infusate K}) - \text{serum Na}}{\text{Total body water} + 1}
\]

Total body water
- early neonate = 0.75 X body wt
- pediatric = 0.6 X body wt
- adult = 0.5-0.6 X body wt
- geriatric = 0.45-0.5 X body wt
Hypokalemia
Hypokalemia

- Hypokalemia common in neonates
- Anabolic increase in cell mass (growth)
 - Potassium major intracellular ion
- Renal K wasting
 - Diuresis
 - Renal pathology
Hypokalemia

• Stress/sepsis hypokalemia

Resting muscle
• uses 10% of available Na⁺:K⁺ ATPase activity

Stimulated acutely by
• Insulin
• Epinephrine
• ↑ intracellular Na
• Contractile activity

Stress/Sepsis →↑ epinephrine
• ↑ Na⁺:K⁺ ATPase activity
• Significant intracellular shifts of K → hypokalemia
• ↑ ATPase demand
 ↑ glucose utilization/requirement
 ↑ glucose transport into the cell resulting
 → further shift K intracellular
Hypokalemia

- High levels of potassium in milk will support growth requirements
- Stressed/Septic neonates
 - Not tolerate oral feeding
- Neonates require significant K supplementation
 - Prolonged intravenous glucose
 - Parenteral nutrition
 - Limited or no milk feeding
- Glucocorticoid administration
 - Mineralocorticoid receptor stimulation
 \rightarrow urine loss of potassium
Hyperkalemia

- Differential diagnosis
 - Ruptured bladder
 - Urinary tract defect
 - Sick cell syndrome
 - Iatrogenic
 - Protein catabolism
Hyperkalemia

• Loss of integrity lower urinary tract
 ▲K only when on a milk diet
 • Also true for ▼Na, ▼Cl
 Receiving parenteral nutrition
 • ▲K only occur with overzealous parenteral K administration

• Sick cell syndrome
 Suffer global cell insult
 • Perinatal hypoxic ischemic asphyxial insults
 ▲K = 6-8 mEq/l

• Iatrogenic in the face of renal insufficiency
• Protein catabolism - mild hyperkalemia
Hypocalcemia

- ↓ plasma Ca^{++}
 Fetal to neonatal physiology transition
 Active placental transport high levels of Ca
 At birth
 - Neonate’s homeostatic mechanisms begin regulation

- Parathyroid hormone (PTH)
 Level is low at birth
 - Slow to respond

PTH requires
 - Mg & Vitamin D
 Both initially deficient
Hypocalcemia

- **Calcitonin**
 - At birth high levels
 - Further increase calcitonin
 - Hypoxic ischemic asphyxia
 - Prematurity
- **Ca^{++} levels**
 - Decrease during the first hours after birth
 - Will stabilize and slowly rise
 - If no confounding factors
Hypocalcemia

- Neonatal alkalosis
 - Intrauterine catabolism
 - Catabolism during neonatal period
 - \(\rightarrow \) persistently low calcium levels
- Neonate well adapted to low \(\text{Ca}^{++} \)
 - Treatment not indicated
- Extremely low \(\text{Ca}^{++} \) levels at birth
 - Suggest significant intrauterine distress
Hypercalcemia

- Ca++ high at birth
 6-7 mg/dl
 Active placental transport

- High levels transient
 Decreasing within hours
 Unless significant metabolic acidosis

- Unusually high ionized at birth
 Ca++ = 10-20 mg/dl
 Suffered significant intrauterine distress

- In response to acidosis
 Theoretical cause but not usually seen
Premature
Incomplete Ossification
Sepsis
Neonatal encephalopathy
Neonatal metabolic maladaptation
Neonatal gastroenteropathy
Neonatal nephropathy
Hypomagnesemia

- Mg actively transported across the placenta
 - Transport adversely affected by
 - Placental insufficiency
 - Low maternal blood levels
- May be born with hypomagnesemia
- \(\downarrow \) Mg at birth
 - Reflect total body deficiency
 - \(~50\%\) of total body Mg - soft tissues and plasma
- \(\downarrow \) Mg not abnormal homeostasis
 - as is true with calcium
Hypomagnesemia

- ↓Mg can be accompanied by ↓Ca
 If persistently ↓Ca
 - Investigate ↓Mg
 - PTH requires normal Mg
 - Treating with Ca may exacerbate the problem
 - Ca will compete with Mg for transport
 - Treatment with Mg may readily remedy hypocalcemia

- ↓Mg will also occur associated with
 High phosphate levels
 Diarrhea
 Excessive renal loss

- ↓↓↓K
 Require Mg therapy before K will increase
Hypermagnesemia

• Unusual in the neonate
• Iatrogenic errors
 MgSO4 infusions
 • Treating hypoxic ischemic encephalopathy
 • Overzealous treatment
• Signs
 Mild central depression
 Not associated with hypotension
Cases

- **Hypernatremia**
- **Hyperkalemia**
 - Two Mur
 - Yankee
- **Redistribution**
- **Hyponatremia**
- **SIAD**
Vinnie

• History
 Day 353 gestation.
 Could not stand – weak

• Referred - 15 hr old
 Post maturity
 Neonatal encephalopathy
 • Hyperresponsiveness
 • Poor balance

• Early sepsis
Vinnie
Hospital Course

• Day 2
 Improve strength, ability to stand
 Was learning to nurse the mare
 Periods of central tachypnea
 • Occasional ataxic breathing
 Urinated infrequently
Vinnie
Hospital Course

• Day 3

Neurologic signs

• Tachypnea with breath-holding episodes
• Held his tongue out to the right side of mouth
• Continued hyperresponsive, poor balance
 Runs into things
 Circling - large circles

Other signs

• Oliguric - 30 mls of urine per hour (<0.5 ml/kg)
• Weight gain of 12 lb.
• No edema
Vinnie

- **Key physical Exam Findings**
 - Weight gain
 - Decreased urine production
 - No edema
 - Course of neurologic signs

- **Key Laboratory Findings**
 - Plasma osmolarity 276
 - Urine osmolarity 585
 - Creatinine was 1.13 mg/dl
Vinnie

- Syndrome of Inappropriate ADH Secretion (SIADH)
- Fluid retention
- Cerebral cellular edema
- Secondary to HIE
- Generally transient
SIADH Therapy

- **Goal** - Reduction of total body water
- **Fluid restriction** is the key
 - Intolerable on the long-term
 - Use milk replacer instead of mare’s milk
 - Concentrated milk replacer
- **Use of furosemide**
 - Will increase sodium loss as well as water loss
 - **COULD** exacerbate problem
- **Use of hypertonic saline**
 - With acute seizures use small volume
 - Will increase Na to 3 to 4 mEq/l with 4-6 ml of the 3%
 - Routine use – exacerbates water and Na overload
- **Antagonize ADH**
 - Demeclocycline
Vinnie
Clinical Course

• Day 4 early am
 Progressive
 • Couldn’t stand, Frantic circles, looses balance
 Treated with furosemide, phenobarbital

• Day 4
 Began double strength milk replacer
 Behavior improved - lab data low point

• Day 5 & 6
 Dramatic improvement of signs
- **Problems**
 - HIE
 - Apneustic breathing, central hypercapnea
 - Weak, hypertonus, hyperkenetic, hyperresponsive
 - Metabolic maladaptation
 - Neonatal nephropathy
 - Sepsis
 - Neonatal gastroenteropathy

- Speedy
 - 8 hr old
 - 1 wk post-term
Speedy

- Respiratory acidosis
 - pH 7.167, P_{co2} 83
- Hypochloremia (Cl 75 mEq/l)
- Cr (29.32 mg/dl)
- PO4 (24.37 mg/dl)
- Lactate (5.6 mmol/l)
- Ca++ (2.33 mg/dl)
 - Total Ca 3.46 mg/dl
- Mg++ (0.5 mg/dl)
• Hypocalcemia
 Refractory to intravenous Ca therapy
 • 36 hrs of IV Ca therapy
 • No relationship between blood levels and supplement (67-12.5 mg/kg/hr)

Responded to Mg therapy
 • Within 5 hrs Ca began to increase
 • PTH effect from ↓Mg
Speedy

- SIDa = 58.7
- SIDe = 78.7
- SIG = +19.9

- Osm_{calc} = 292.7
- Osm_{measured} = 357
- Osm_{Gap} = -64.2
Hyperkalemia
Two Mur

- Gestation
 Mare had chronic wasting
 Gestation 378 days
- Mare agalactic
 Not realized until foal 16 hrs old
- Problems
 Neonatal encephalopathy
 SIRS/Sepsis
 Dysphagia
- Presenting K = 6.78
 Na = 147
- Osmolality
 Osm_{calc} = 308
 Osm = 323
 Osm_{Gap} = 14.8
Yankee

- Hx
 - PPS
 - Birth resuscitation by farm manager
 - Weak and legs cold since birth
 - Arrived 14 hrs old

- Problems
 - Neonatal encephalopathy
 - Neonatal gastroenteropathy
 - SIRS - intrauterine

- Presenting $K = 6.44$, $Na = 135$
 - $Osm_{calc} = 290.5$
 - $Osm = 314$
 - $Osm_{Gap} = 23.5$
Hugsie

- **History**
 - Term foal
 - 10 minute stage II
 - Placenta 25 lbs (foal 122 lb)
 - Accompanied sick mare 3 hrs old

- **Problems**
 - Neonatal encephalopathy
 - Somnolence, hypertonus, seizures
 - Sirs
 - Neonatal gastroenteropathy
Hugsie

- Progression of signs
 Edema – Na overload?
 - Fluid overload – ↑ wt 5.9 kg/48 hr

Neonatal encephalopathy
 - Progressed to a comatose state

Neonatal nephropathy
 - Presenting Cr = 13.6 mg/dl
 - Decreased to 1.12
 - Increased to 3.66
 - F_{xna} increased 0.43% → 6.4%

↑ CPK > 35,000
Hugsie

Redistribution
Hyponatremia

• Admission
 Na = 130 mEq/l
 Cl = 88 mEq/l
 Osm\textsubscript{c} = 274.4 mOsm/l
 Osm\textsubscript{m} = 285 mOsm/l
 Osm\textsubscript{gap} = 10.6

• With deterioration
 Na = 112 mEq/l
 Cl = 75 mEq/l
 Osm\textsubscript{c} = 242.5 mOsm/l
 Osm\textsubscript{m} = 275 mOsm/l
 Osm\textsubscript{gap} = 32.4
Hypernatremia
1 week old Cria

- 7 day old cria
 - Mother sick
 - Very hot ambient temperatures

- Clinical signs
 - Weak, depressed, dehydration

- Lab findings
 - Na = 183
 - K = 5.6
 - Cl = 141
 - Osm = 437
Hypernatremia
Origin of the Hypernatremia

- **Insensible losses**
 - Small body size
 - High surface area to body size ratio
 - High innate metabolic rate
 - High evaporative loss
 - Very hot weather

- **Decreased intake**
 - Lack of opportunity to nurse
 - Sick mother
 - Hembra’s milk production depressed

- **High Na intake**
 - If hembra is drying off – milk Na ↑
Hypernatremia
1 week old Cria

• Mixed Rx
 Na containing fluids
 D5W
 Milk replacer
 Nursing
 • Clinical signs improved
Hypernatremia 1 week old Cria

- After 21 hrs Rx

Clinical signs
- Disorientation, seizures
- 1 hr later irregular respiratory efforts

Na = 166 mEq/l (183)
- 0.81 meq/hr
- Osm = 397 mosm/l (437)

K = 4.44 mEq/l (5.6)
Cl = 134 mEq/l (141)
Electrolyte Abnormalities in Neonates
Jon Palmer, VMD, DACVIM
Director of Neonatal/Perinatal Programs
Graham French Neonatal Section, Connelly Intensive Care Unit
New Bolton Center, University of Pennsylvania

Critically ill neonates frequently have electrolyte abnormalities. Usually these are limited to mild disturbances serving as epiphenomena reflecting organ dysfunction (gastrointestinal, renal or endocrine), iatrogenic fluid therapy or feeding mishaps or disorderly transition from fetal to neonatal physiology. Occasionally the disturbances can be severe enough to be life-threatening. The most frequently encountered abnormalities involved sodium, chloride, potassium and calcium.

Sodium/Water Balance

An understanding of the unique sodium handling during the transition from fetal physiology through the neonatal period to adult renal function is important when trying to understand and modify sodium and water balance in the neonate. Neonates require much of the available dietary sodium for bone growth and increase in body mass with the accompanied increase in interstitial space. Although the late term fetus generally has a high fractional excretion of sodium, either before birth (fetal foal) or soon after birth (most other species) the fractional excretion of sodium drops dramatically adapting to a sodium conserving mode. This is appropriate since the neonate’s usual diet, milk, is sodium poor. The sodium conservation mode will continue even when the neonate is exposed to a sodium load as may occur while receiving sodium containing intravenous fluids. In such situations, sodium overloading, and expansion of the extracellular fluid space, is a common sequela. Sodium fractional excretion will remain low unless confounding influences such as a glucose diuresis, fluid diuresis from large volume administration of sodium containing fluids, diuretic induced diuresis or renal tubular disease is present. Further complicating the sodium/fluid balance is the neonates difficulty in dealing with volume loading which may occur with fluid therapy. The neonate’s inability to rapidly excrete a volume load is both a consequence of fluid shifts between the intravascular and interstitial space and the neonatal kidney’s inability excrete the excess volume.

Hyponatremia

When investigating hyponatremia it is convenient to classify the causes as being spurious, dilutional, depletional or secondary to redistribution.

1. **Spurious Hyponatremia**: This form occurs when a low level of plasma sodium is reported from the laboratory despite a normal plasma level present in the patient. This may be from the presence of substances such as lipids or mistakes in sampling such as may occur when a venipuncture site distal to a hypotonic drip is used for sampling or the sample is taken from a catheter used for infusion of a hypotonic solution without sufficient dead space clearing.

2. **Dilutional Hyponatremia**: This form is the most common to occur in neonates and usually results from a lack of balance of fluid intake and urine output as occurs in any loss of integrity of the urinary system (ruptured bladder, fenestrated ureters, etc.), renal failure,
failed or delayed renal transition from fetal to neonatal physiology or water overload as may occur with management mistakes or syndrome of inappropriate antidiuresis (SIA).

3. **Depletional Hyponatremia:** This form commonly occurs when diarrhea results in excessive sodium loss, when sodium wasting occurs in the urine (especially when the neonate is on a milk diet with limited sodium intake), the use of diuretics or endocrine disturbances.

4. **Redistribution Hyponatremia:** In this form, the low sodium occurs secondary to the presence of other osmotically active particles in the plasma drawing fluid out of the intracellular space (redistribution) resulting in an appropriately decreased sodium concentration. This may occur secondary to hyperglycemia, iatrogenic addition of osmoles (e.g. mannitol) or secondary to sick cell syndrome.

Syndrome of Inappropriate Antidiuresis (SIAD)

SIAD, sometimes referred to as SIADH (Syndrome of Inappropriate Antidiuretic Hormone Secretion), results in hyponatremia secondary to inappropriate reabsorption of water from the urine. The diagnosis of SIAD can be made when inappropriately high urine osmolarity occurs in the presence of hyposmolar hyponatremia with normal renal function, normal adrenal function and euvolemma. There may be excessive renal sodium excretion but this is often absent in the neonate because of low sodium intake. Clinically, the syndrome is marked by a sudden decrease in urine output, high urine specific gravity, significant weight gains (10-15% of body weight overnight) without edema and a dropping plasma sodium level. SIAD may be secondary to true inappropriate vasopressin release. The release may be erratic and unpredictable, may be accompanied by a reset of the osmostat (the threshold for release is lowered), vasopressin release may be normal at higher osmolarity but is not fully suppressed at lower osmolarity or vasopressin release may be normal but the receptors are either hypersensitive or continue to respond after vasopressin levels drop (hypovasopressinemic antidiuresis). There are situations where high urine osmolarity occurs in the presence of hyposmolar hyponatremia which mimic inappropriate vasopressin release of which in reality are not. With hypovolemia, appropriate vasopressin release, in defense of volemia, may result in concentrated urine and hyponatremia. Use of diuretics, abnormal adrenal function or abnormal renal function may also result in mimicking clinical scenarios.

Sick Cell Syndrome

Hyponatremia is common in critically ill patients because of loss of cell wall integrity allowing solutes which are normally constrained inside cells to pass into the extracellular space, drawing fluid with them resulting in a dilution of extracellular sodium levels. Redistribution hyponatremia is reflected by the presence of an “Osmolar Gap.” The Osmolar Gap is the difference between calculated and measured osmolality and reflects the presence of unmeasured osmolites. An Osmolar Gap > 10 mOsm has been associated with multiorgan failure and higher fatality rate in intensive care patients. Although the solutes in question have been thought to be organic phosphate, pyruvate, lactate or amino acids, recent studies have failed to identify any of these as major components.
Hypernatremia

Hypernatremia is less commonly found in the critical neonate. The causes of hypernatremia include spurious, excessive free water loss and iatrogenic. Spurious hypernatremia is usually secondary to sampling errors secondary to withdrawing blood samples from the intravenous catheter without taking a large enough presample resulting in sample contamination with saline. Increased free water loss may be secondary to increased insensible loss in situations where the neonate has an increased respiratory rate in the face of low humidity and a high body temperature or where external warming through radiant heat or hot air heat results in increased evaporative loss. Rarely, maternal milk may have a high sodium content resulting in excessive sodium intake relative to free water. More commonly however, iatrogenic mishaps result in excessive sodium intake relative to free water such as the use of improperly mixed electrolyte solutions, improperly mixed milk replacers (all powdered milk replacers are sodium rich), the use of hypernatremic intravenous fluids solutions (e.g. 5% sodium bicarbonate) or the use of saline in oxygen humidifiers.

Hypochloremia/Hyperchloremia: See section on “Metabolic acid/base abnormalities.”

Hypokalemia

There are in number of reasons why hypokalemia is a common finding in neonates. Potassium is the major intracellular ion. Anabolic increase in cell mass (growth) must be supported by available potassium. Stress/sepsis will also lead to hypokalemia. In the resting state, the muscles are using only about 10% of the available Na+: K+ ATPase activity. It is stimulated acutely by insulin, epinephrine, increased intracellular sodium concentrations and contractile activity. Epinephrine release stimulated by stress/sepsis will stimulate Na+:K+ ATPase activity resulting in significant intracellular shifts of potassium resulting in hypokalemia. The increase ATPase demand will result in increased glucose transport into the cell resulting in increased glucose utilization/requirement and further transport of potassium intracellular. High levels of potassium in milk will support growth requirements, but those foals suffering from stress/sepsis often are the same foals who will not tolerate oral feeding. Any foal requiring parenteral nutrition or prolonged intravenous glucose administration and limited milk feeding will require significant potassium supplementation. Glucocorticoid administration can result in mineralocorticoid receptor stimulation and significant urine loss of potassium.

Hyperkalemia

Although most clinicians think of a ruptured bladder when they find significant hyperkalemia in the neonatal foal, a second, more common differential is sick cell syndrome. Hyperkalemia will only occur with loss of integrity of the lower urinary tract when the foal is on a milk diet high in potassium. If the foal is receiving parenteral nutrition, hyperkalemia will only occur with overzealous parenteral potassium administration. Foals who have suffered a global cell insult, such as significant perinatal hypoxic ischemic asphyxial insults, may have significant hyperkalemia (as
Another cause of hyperkalemia can be iatrogenic in the face of renal insufficiency. Mild hyperkalemia can occur secondary to protein catabolism.

Hypocalcemia

Neonates frequently have low plasma ionized calcium levels secondary to the transition from fetal physiology to neonatal physiology. Near term the fetus receives high levels of calcium through active placental transport. At birth, the neonate's homeostatic mechanisms must begin to regulate blood ionized calcium levels. At birth, the parathyroid hormone (PTH) level is low and doesn't increase very quickly. It is slow to respond. PTH requires magnesium and vitamin D, both of which may be initially deficient. At birth, high levels of calcitonin are usually present and asphyxia or prematurity may further increase calcitonin levels. Usually ionized calcium levels decrease during the first hours after birth. Without confounding factors they will stabilize and slowly rise. Neonates who have intrauterine catabolism or are catabolic during the early neonatal period often develop the significant alkalosis which can result in persistently low calcium levels. In general, the neonate is well adapted to these low calcium levels and treatment is not indicated. Extremely low ionized calcium levels at birth suggest significant intrauterine distress.

Hypercalcemia

Because of active placental transport of calcium, ionized calcium is usually quite high at birth (as high as 6-7 mg/dl). These levels are transient (decreasing within hours) unless significant ongoing metabolic acidosis occurs. Foals born with unusually high ionized calcium levels (10-20 mg/dl) may have suffered significant intrauterine distress.

Hypomagnesemia

Magnesium is actively transported across the placenta, but unlike calcium, its transport can be adversely affected by placental insufficiency and low maternal blood levels. So a neonate may be born with significant hypomagnesemia. Proximately 50% of total body magnesium is and soft tissues in the plasma so low birth magnesium levels reflect total body deficiency and not abnormal homeostasis as is true with calcium. Hypomagnesemia can be accompanied by hypocalcemia and any neonate who is persistently hypocalcemia should be investigated for hypomagnesemia. PTH requires normal magnesium levels to function in bone/serum calcium homeostasis. In such cases, treating the hypocalcemia patient with calcium may exacerbate the problems since calcium will compete with magnesium for transport. Treating with magnesium may readily remedy hypocalcemia. Besides fetal growth retardation, hypomagnesemia is associated with high phosphate levels, diarrhea and excessive renal loss. Also, occasionally extremely hypokalemic patients require magnesium therapy before their potassium will increase.

Hypermagnesemia

Hypermagnesemia is an unusual condition in the neonate except for iatrogenic errors. MgSO4 infusions have become popular in treating hypoxic ischemic encephalopathy, and overzealous treatment may result in high magnesium levels.