Metabolic Acid-Base Abnormalities

Jon Palmer, VMD, DACVIM
Director of Neonatal/Perinatal Programs
Graham French Neonatal Section, Connelly Intensive Care Unit
New Bolton Center, University of Pennsylvania
Metabolic Acid-Base Abnormalities

- Pathophysiology
- Metabolic acidosis
 - SID acidosis
 - Lactic Acidosis
 - SIG acidosis unmeasured anions
 - Unexplained metabolic acidosis
- Metabolic alkalosis
 - SID alkalosis
 - Cl Responsive
 - Cl Resistant
Pathophysiology
Disorders of acid-base balance

- Acid-base abnormalities
 Only occur with failure to compensate
 - Disorders primary regulating organs
 - Exogenous drugs/fluids
 Alter ability to maintain acid-base balance
 - Abnormal metabolism
 Overwhelms ability of defense mechanisms
- SID is regulated by the kidneys/GI tract
Acid-Base Balance
Renal Regulation

• Renal excretion strong ions
 Most reabsorbed automatically
 Only able to excrete small amounts per min
 Thus it takes hours for a renal response

• Diet – similar ratios of strong cations/anions
 Sufficient Cl available to filter
 If not reabsorbed – ↑SID

• Cl excretion – primary regulating mechanism
 Na/K handling – other priorities – not acid-base
Renal Regulation
Modifying SID

- Excrete Cl\(^{-}\) without Na\(^{+}\) or K\(^{+}\) - regulate SID
 Charges must balance
 Excrete as NH\(_4\)^{+}Cl\(^{-}\)

- Renal-Hepatic Interaction
 NH\(_4\)^{+} co-excretion with Cl\(^{-}\)
 NH\(_4\)^{+} produced in the kidney and liver
Renal Regulation

Ammoniagenesis

• Hepatic glutaminogenesis
 Stimulated by acidosis

• Nitrogen metabolism in liver
 → Urea, glutamine, (NH$_4^+$)
 Glutamine → kidney → ↑NH$_4^+$ → ↑Cl$^-$ excretion
 ↑Glutamine → alkalosis by ↓Cl$^-$ relative to Na$^+$

• Hepatocyte
 Cells with urea production capacity
 • Closer to portal vein
 • GI tract nitrogen → urea first
 Acidosis inhibits urea formation
 • N to glutamine producing cells → ↑Glutamine →
 • Kidney → NH$_4^+$ → ↑Cl$^-$ loss → compensatory Alk
Clinical Effects Of Metabolic Acidosis

- Brief exposure to acidosis well tolerated
 Exercise - pH < 7.15, lactate > 20 mEq/liter
- Chronic mild acidosis (pH < 7.35)
 Metabolic bone disease
 Protein catabolism
- Critically ill patients
 Not tolerate even brief acidosis
- Metabolic acidosis patients
 Poorer outcome than respiratory acidosis
 Cause is more important than degree of acidosis
 Epiphenomenon
Low albumin \rightarrow \downarrow SID
Neonate \uparrow PO$_4$ \rightarrow \uparrow SID

Cations

Anions

Na$^+$ \downarrow SID
Cl$^-$ SID
Metabolic Acidosis

- ICU patients SID = 30
 - Less reserve
 - ↑Lac⁻ or ↑NaCl treatment → more effect
 - Have lower SID without evidence of acidosis
 - 2ndary to ↓alb → ↓A⁻
 - No compensatory ↓Pco2 for other reasons
 - So must ↓SID to maintain the pH

- ↓SID → ↓pH not linear
 - As SID < 20 → greater ↓pH
 - As SID approaches 20 → small insult ↓↓↓pH
Metabolic Acidosis
Strong Ion Acidosis
Decrease SID
Metabolic Acidosis
Strong Ion Acidosis
Decrease SID

Strong Cations
↓Na⁺
SID
Strong Anions
Metabolic Acidosis
Increase in Unidentified Anions
SIG < 0

Strong Cations

\[\text{SIG} < 0 \]

\[\text{UA}^- \]

\[\uparrow \text{UA}^- \]
Metabolic Acidosis

• Metabolic acidosis
 ↓ SID → Results in ↑ free H+ → acidosis

• ↓ SID
 ↑ Organic acids – ↑Lactate, ↑Ketones
 Loss of cations – diarrhea
 Mishandling of ions -- renal tubular acidosis
 ↑ Exogenous ions -- iatrogenic, poisoning
Metabolic Acidosis
Strong ion acidosis

- Lactic acidosis
- Hyperchloremic acidosis
Lactic Acidosis

- Cardinal sign of septic shock
 Synonymous with hypoperfusion
 Mistakenly used as a gauge of perfusion
- Common in septic patients
 With good perfusion
Source of Lactate in Sepsis

- **Septic shock**
 - Increase ATP requirement
 - Anaerobic metabolism
 - Rapid increase lactate levels
- **Sepsis without shock**
 - “Stress” lactic acidosis
 - Cytokine mediated
 - IL-1beta, IL-6 and TNF alpha
Normally

Glucose → glycolysis → Pyruvate → Pyruvate dehydrogenase → Acetyl-CoA → OOA

Kreb’s Cycle: α-ketoglutarate → Isocitrate → Citrate → Glucose

Lactate ↔ Lactate ↔ Pyruvate
Glucose → glycolysis → pyruvate → pyruvate dehydrogenase → acetyl-CoA → Kreb’s Cycle

But ...

Lactate → lactate → Kreb’s Cycle

α-ketoglutarate → isocitrate → OOA

Citrate → Kreb’s Cycle → α-ketoglutarate → isocitrate
Lactate Sources

• **Tissue Hypoxia**
 - Hypodynamic shock
 - Organ ischemia

• **Hypermetabolism**
 - Increased aerobic glycolysis
 - Increased protein catabolism
 - Increased muscle activity – shivering

• **Decreased Clearance of Lactate**
 - Shock – poor liver perfusion
 - Cytokine-mediated
 - Liver failure

• **Inhibition of Pyruvate Dehydrogenase**

• **Activation of Inflammatory Cells**
Source of Lactate in Sepsis

- Pyruvate dehydrogenase block
 - Cytokine down-regulation
 - Relative thiamine deficiency
 - Forces glucose → lactate production

- SIRS Hypermetabolism
 - Increase cellular glucose uptake
 - Stress hormone mediated
 - Epinephrine
 - Cytokine-mediated modulation of glucose transporter
 - ↑ synthesis
 - ↑ activity
 - ↑ distribution
 - ↑ glucose entry into cells
 - Mass action → ↑ glycolytic flux → ↑ lactate production
Source of Lactate in Sepsis

- Phagocytes major cellular source
 Required energy for respiratory burst
 Occurs where macrophages are active
 - Damaged organ or site of trauma
 - Liver, spleen, gut, lung, wound
- Decreased hepatic lactate clearance
 Sepsis impairs liver clearance
Lactate Accumulation
Epinephrine Surge

- After injury, in sepsis, at birth
- Stimulates $\text{Na}^+:\text{K}^+$ ATPase
 - $\uparrow\uparrow$ aerobic glycolysis \rightarrow \uparrow lactate production
 - Coupled to $\text{Na}^+:\text{K}^+$ ATPase activity in muscle
 - At rest, $< 10\%$ of its total $\text{Na}^+:\text{K}^+$ ATPase
 - Maintain Na:K gradients
 - \uparrow activity $\text{Na}^+:\text{K}^+$ ATPase
 - \uparrow lactate production
 - under well-oxygenated conditions
 - One cause of \downarrow K
- Epinephrine results in
 - Lactatemia
 - Hypokalemia
Lactate Accumulation
Clearance by Tissues

• Liver
 Large capacity for lactate removal

• Other organs
 Kidneys
 GI tract
 Muscles

• Lactate clearance reduced by
 Sepsis
 Alkalosis
 Acidosis (pH < 7.20)
 Liver failure
Hyperlactatemia without acidemia

• Massive quantities of Na lactate administered
 Alkalemia occurs as lactate is metabolized

• Chronic lactate accumulation
 Chloride ions move out of the vascular space
 Compensatory increase SID

• Endogenous hyperlactatemia
 Initially always associated acidosis
 Normal pH or alkalosis
 • Suggests relative chronicity
 • Hypochloremic increase SID
Lactic Acidemia

- Nonspecific marker of hypoperfusion
- Important marker of tissue distress

Malmetabolism
Lactate Levels
Hypoperfusion

• Traditionally
 Increased blood lactate = hypoxia/hypoperfusion
 Tissue hypoxia → MODS/death

• Fundamental goal of therapy
 Restoration of cellular oxygen delivery

• Reliable indicators of adequate perfusion
 Warm legs
 Strong peripheral pulses
 Organ function - Urine output, Mental status, Borborygmi

• Lactate levels elevated
 With hypoperfusion
 With normal perfusion

• Decrease lactate levels
 A goal of cardiovascular support
 Not exclusive goal
 Pressor therapy may cause significant increase lactate
Lactate Levels

Hypoperfusion

- Blood lactate
 Guide to resuscitation
- Epinephrine surge
 Occurs
 - Normal birth
 - SIRS - Sepsis/septic shock
 - Hypoxic ischemic asphyxial insult
 Greatly accelerate aerobic glycolysis and lactate production
 - Coupled to Na+: K+ ATPase activity in skeletal muscle
- Significant proportion ↑ blood lactate
 Unrelated to poor tissue perfusion
 Not respond to supranormal oxygen delivery
- Increased Na+: K+ ATPase activity
 →↑lactate production under well-oxygenated conditions
 Erythrocytes, vascular smooth muscle, neurons, skeletal muscle
Lactate

Enteric Bacteria

• Lactate produced by enteric bacteria
 Absorbed, produce lactic acidosis
 D-lactate
 • Endogenous lactate is L-lactate

• D-lactic acidosis
 Detection
 • Some assays for lactate only report L-lactate
 • Some assays report total lactate
 • Special D-lactate assays
 Will appear as unidentified anion if not assayed

• Metabolism
 Will be catabolized through L-lactate pathway
 Clearance is slower than D-lactate
Strong Ion Acidosis
Strong Ion Acidosis

Hyperchloremic acidosis

• Hyperchloremic acidosis
 \uparrowCl$^-$ relative to Na$^+$
 Loss of cation relative to Cl$^-$

• Renal response Acidosis
 \uparrowCl$^-$ excretion in urine
 Kidney must be source of acidosis since
 • \uparrowplasma Cl$^-$ rather than \downarrowplasma Cl$^-$

• Extrarenal \uparrowCl$^-$
 From treatment with Cl$^-$ (NaCl)
 Lower GI tract cation loss without loss of Cl$^-$
Strong Ion Acidosis

- **GI tract**
 - Diarrhea
 - Diarrhea fluid $\text{Na}^+ > \text{Cl}^-$ similar to plasma
 - If treat with a $\text{NaCl} \rightarrow \uparrow \text{Cl}^-$ $\rightarrow \downarrow \text{SID}$
 - If treat with Plasmalyte this will not happen
 - If drink water - $\downarrow \text{Cl}^-$ but $\downarrow \downarrow \text{Na}^+ \rightarrow \downarrow \text{SID}$
 - If drink strong ion balanced electrolyte water may avoid

- **Iatrogenic**
 - TPN/PPN
 - Contains balance of weak anions (e.g. acetate) + Cl^-
 - If acetate $<<$ Cl^- then plasma $\text{Cl}^- \uparrow \rightarrow \downarrow \text{SID}$

Saline - dilutional acidosis

- Critical patient - already have lactic acidosis, can't change ventilation to compensate, have $\downarrow A_{\text{TOT}}$ ($\downarrow \text{albumin}$)
- Treated 5-10X plasma volume \rightarrow significant acidosis
- Unlike normal patient treated with NaCl
ICU Patient – no urine output

<table>
<thead>
<tr>
<th></th>
<th>SID</th>
<th>pH</th>
<th>Pa_{CO_2}</th>
<th>BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline*</td>
<td>30</td>
<td>7.40</td>
<td>38</td>
<td>-2.0</td>
</tr>
<tr>
<td>Lactic Acidosis</td>
<td>20</td>
<td>7.29</td>
<td>29</td>
<td>-11.4</td>
</tr>
<tr>
<td>10 liters saline</td>
<td>14</td>
<td>7.13</td>
<td>25</td>
<td>-20.1</td>
</tr>
</tbody>
</table>

* Na = 130, Cl = 100
** Lactate = 10 mmol/l
Strong Ion Acidosis
Renal Acidosis

- Renal failure

 Uncomplicated renal failure no acidosis
 Hyperchloremic acidosis ↓SID
 - Na wasting > Cl excretion
 - Failure of Cl excretion without Na

 Chronic ↑sulfates ↓SID

- Renal tubular acidosis

 Defect in all types of RTA
 - Inability to excrete Cl⁻ in proportion to Na⁺
SIG acidosis
Unmeasured anions

• Renal failure
• Ketoacidosis
 Starvation
 Metabolic errors
• Toxins
 Ethylene glycol
 Salicylates
• Sepsis/endotoxemia
 Lactic acidosis
 Other
• Liver disease
Unexplained metabolic acidosis

- **Lactic acidosis**
 More acidic than explained by lactate level
- **Sepsis**
 Acidosis without ↑ lactate
 May be secondary to ↑ Cl⁻
 Unmeasured anions released from liver
 - Normally liver clears unmeasured anions
- **Often ⅓ of acidosis is unexplained**
 Loss of Donnan equilibrium of plasma
 Capillary leak – loss of albumin from vascular space
 Cl⁻ moves into vascular space to balance loss
 Hyperchloremic acidosis with ↓ SID
Metabolic Alkalosis
Metabolic Alkalosis
Strong Ion Alkalosis
Increased SID

↓H⁺
Strong Cations

SID

↓Cl⁻
Strong Anions
Metabolic Alkalosis
Unidentified Cation Alkalosis
SIG > 0
Metabolic Alkalosis

- Metabolic alkalosis

 ↑SID → Results in ↓ free H+ → alkalosis

- ↑SID

 Loss of anions > cations

 Diuretics

 Renal disease
Metabolic alkalosis

- ↑SID

 Loss of Cl⁻ -- ↓anions

 - Cl⁻ loss > Na

 ↑Cations (rare?)

- Cl⁻ Responsive

- Cl⁻ Resistant
Metabolic alkalosis
Cl Responsive

• Cl⁻ loss easily treated

Cl⁻ loss > Na⁺
Temporary loss
Not ongoing (UCl low)
Metabolic alkalosis
Cl Responsive

- Gastrointestinal
 Reflux, Cl wasting diarrhea

- Post diuretic
 Volume contraction \rightarrow ↑aldosterone \rightarrow ↑Na reabsorption
 But also ↑K and Cl⁻ loss \rightarrow alkalosis

- Post chronic lactic acidosis
 ↓Cl⁻ as compensation for acidosis
 Lactic acidosis may resolve quickly
 Residual hypochloremic alkalosis

- Post hypercapnia – metabolic compensation
 Hypercapnea resolves quickly
 Residual hypochloremic alkalosis
Metabolic alkalosis
Cl Responsive

• Treatment
 Replace Cl with NaCl, KCl

• Dehydration usually present
 ↑ SID – corrected with saline
Metabolic Alkalosis
Cl Resistant

Cl⁻ loss is ongoing (Ucl high)

Hormonal mechanisms
• Mineralocorticoid excess
• Primary/secondary hyperaldosteronism
• Cushing syndrome
• Liddle’s syndrome
• Bartter’s syndrome
• Excessive corticoids
• Excessive licorice intake (mimics aldosterone)

Ongoing diuretic use
Metabolic Alkalosis
Cl Resistant

• Only temporarily correct with Cl⁻ therapy
 Urine Cl⁻ > 20 mmol/l
 Saline therapy may temporarily correct SID

• Ongoing renal loss results in return ↑ SID
 ↑ Mineralocorticoid activity
Hyperchloremic acidosis

61119

- Diarrhea noted day 3
- Referred day 4
 - WBC 10.9
 - 77% Segs
 - 3% bands
 - 20% Lymphs
 - Fibr 824mg/dl
 - IgG > 800 mg/dl
Hugsie
60237

- **History**
 - Term foal
 - 10 minute stage II
 - Placenta 25 lbs (foal 122 lb)
 - Accompanied sick mare 3 hrs old

- **Problems**
 - Neonatal encephalopathy
 - Somnolence, hypertonus, seizures
 - SIRS
 - Neonatal gastroenteropathy
66943
Thelma’s Beauty

- 3 yr old TB race horse
- Day of presentation
 Raced
 “Collapsed”?
 Colic
 Rx Banamine 2X
- Admission PE
 Quiet/depressed
 General muscle fasciculations
 Slightly dehydrated
 Reflux – 10 l
 Very thirsty (despite fluid therapy)
66943
Thelma’s Beauty

- 1/9 8 pm - venous
- pH – 7.570, 7.542
- Pco2 – 59.9, 64.9
- BE - +29.4
- HCO3 – 55.3

- Na – 154.2
- K – 2.96
- Cl – 88 (85)
- Ca++ - 3.70
- Mg ++ - 0.81
- Glu – 366
- Lac 5.3
- Cr – 2.3
Thelma’s Beauty

- SIDa = Na + K + Ca + Mg - Cl - Lac
- SIDa = 69
 BE = +29
- SIDe = 70 (assuming PO4 = 4.0)
- Osm = 335 mOsm
- Low Ca++, Mg++, K
66943
Thelma’s Beauty

Rx
- IV Norm R
- MgSO4 – 25 gm
- Ca
- K

0 hrs - 12 hrs – 36 hrs
- pH - 7.570 => 7.492 => 7.432
- Pco2 - 59.9 => 56.9 => 40.2
- BE - +28 => 18 => 3.1
- Na - 154 => 158 => 137
- K - 2.96 => 3.08 => 4.43
- Cl - 85 => 106 => 99
- Ca - 3.70 => 4.08 => 5.14
- Mg - 0.81 => 0.79 => 1.00
- SID – 69 => 56 => 45
- mOsm – 334 => 328 => 267
Abnormal acid-base balance predicts the outcome of the case but often is not a direct cause of the fatality, but rather it is an epiphenomenon. Acid base homeostasis is defended as much as O₂ transport and perfusion pressure. The concentration of H⁺ in tissues is very small (only 1/1,000,000 of HCO₃⁻) but very important because of its effect on H⁺ bonds, protein configuration and binding and receptor activity.

Disorders of acid-base balance result from disorders of primary regulating organs (kidney or GI tract), exogenous drugs or fluids that alter the body's ability to maintain normal acid-base balance or abnormal metabolism that overwhelms the ability of the normal defense mechanisms to work.

The kidney excretes only small amounts of strong ions in the urine per minute (because most is reabsorbed) so the renal compensation for acid-base abnormalities takes hours. In the diet there are similar ratios of strong cations and anions. There's sufficient Cl available to filter. If it is not reabsorbed then there is an increase in SID. Cl excretion is the primary regulating mechanism of acid base balance by the kidney. Renal Na and K handling is influenced by priorities other than acid-base balance. The reason for kidney ammoniagenesis is to excrete Cl⁻ without Na⁺ or K⁺ as Cl⁻ NH₄⁺. NH₄⁺ is important not because the H⁺ (< 0.01 mEq/liter) but because of its role in allowing Cl⁻ excretion.

The gastrointestinal tract is an important site for development of acid-base imbalance and may play a role in acid base regulation. Chloride transported from the gastric mucosa to the lumen results in a decrease in SID in the gastric juices making them acidic and simultaneously an increase in SID in the plasma resulting in the "alkaline tide" at the beginning of the meal. Reabsorption of chloride and the duodenum returns the SID in the plasma to its normal level. If gastric fluid is refluxed there's a loss of Cl⁻ resulting in alkalosis (increased SID). Pancreatic secretions have a increased SID because the low concentration of Cl⁻ resulting in a decrease in plasma SID during its formation which helps counter act alkaline tide. If pancreatic fluid is lost through reflux, the plasma remains acidic (↓SID secondary to ↑Cl⁻). The small intestine is very efficient in absorbing Cl⁻. This results in the colonic fluid having an increased SID because of the Na+/K+ left in lumen. Usually, Na⁺ is absorbed primarily through the transport with VFAs with water following but if diarrhea occurs there will be loss of Na+/K+ relative to Cl⁻ resulting in a decreased plasma SID (acidosis). During SIRS, the GI tract may compensate for systemic acidosis by removal of anions resulting in an increased SID.

Critical neonates appear to have a tendency to develop acidosis in situations that would not result in acidosis in normal patients. This can be explained by the observation that they often have a low SID (30 rather than the usual 40 but without acidosis). This results in less reserved so that a smaller increase in acid or a smaller treatment with NaCl will have more effect and more easily result in a significant acidosis by further decreasing SID. This low resting SID is primarily secondary to a low resting albumin resulting in a decrease in A⁻ and the tendency not to decrease Pco₂ because of lack
of central receptor responsiveness to Pco₂. The small effect of this decrease on pH has to do with the fact that decreases in SID does not result in linear decreases in plasma pH. As the SID < 20 there is a greater decrease in pH so that as SID approaches 20, a small insult may result in a dramatic decrease in pH.

Brief exposure to acidosis is tolerated well as with exercise, but chronic mild acidosis (pH < 7.33) can result in metabolic bone disease and protein catabolism. Critically ill patients do not tolerate acidosis well. The underlying cause of the acidosis is much more important than the degree of acidosis in determining the overall negative effect on the condition of the patient. In general, metabolic acidosis can cause decreased inotropy, conduction defects, arterial vasodilation, venous vasoconstriction, decreased oxyhemoglobin binding, decreased 2,3-DPG levels, respiratory depression, decreased sensorium, protein wasting, bone demineralization, insulin resistance, catecholamine stimulation, PTH stimulation, aldosterone stimulation, increased K, increased Ca and hyperuricemia. In general, metabolic alkalosis may cause increased inotropy (Ca++ entry), altered coronary blood flow, increased oxyhemoglobin affinity, increased 2,3-DPG, neuromuscular excitability, encephalopathy, seizures, decreased K, decreased Ca, decreased PO₄⁻ and impaired enzyme function.

Lactic acidosis: In many critical patients, production of the strong ion lactate is an important to cause of acidosis. The origin of lactic acid has been often misinterpreted in the past. The availability of the ability to easily and repeatedly measure lactic acid levels has helped us understand its significance. Traditionally the amount of lactate produced has been linked to total O₂ debt, magnitude of hypoperfusion and severity of shock. However, it is now clear that there are a number of other underlying causes of increased lactate production and when these are ignored and attempts are made to treat increased lactate has hypoperfusion, to the exclusion of the other possible causes, poor outcomes can result.

Besides tissue hypoxia, hypodynamic shock and organ ischemia, high lactate levels will result from hypermetabolism as with increased aerobic glycolysis (from epinephrine), increased protein catabolism and increased muscle activity, decreased lactate clearance as with liver failure or shock, inhibition of pyruvate dehydrogenase as can occur in thiamine deficiency or SIRS and activation of inflammatory cells as with ARDS. So when lactic acidosis develops, the underlying cause must be identified, so that the underlying pathology can be addressed, since the cause of the lactate elevation is more important than the resulting acidosis. In most cases it appears that elevated in aerobic metabolism is more important than metabolic defects (pyruvate dehydrogenase inhibition) or anaerobic metabolism in increasing lactate. Epinephrine, whether given exogenously or if stimulation results in endogenous increases, stimulates an increase in lactate levels by stimulating cellular metabolism (e.g. hepatic glycolysis). This effect does not occur with dobutamine or norepinephrine and is not related to tissue perfusion.

Lactate is a strong ion because at physiologic pH it is completely disassociated. Since the body can produce and dispose of lactate rapidly, pH will quickly and sometimes drastically change as lactate levels increase and decrease changing SID. Hyperlactatemia can exist without acidosis. This will occur when lactate is administered as Na lactate. It will also occur when as lactate increases, another strong anion decreases. The corresponding strong ion is usually chloride. With sustained lactate production Cl⁻ moves out of plasma space maintaining a normalize pH.
The increase in lactate in sepsis is probably not a sign of tissue dysoxia, but rather a combination of factors. Metabolic dysfunction from mitochondrial/enzymatic dysfunction in sepsis will result in an increase in lactate levels (decreased pyruvate dehydrogenase activity). This results of an increased lactate production in sepsis secondary to increased aerobic metabolism (hypermetabolism). Epinephrine induced increase lactate production may so occur in sepsis and finally release of lactate during the development of ARDS may be an important source.

Hyperchloremic acidosis: Hyperchloremic acidosis occurs when there is an increased chloride relative to Na or a loss of cation relative to chloride. In response to acidosis from any cause, the kidneys will excrete chloride ion in the urine and take compensatory measure to increase the SID. When hyperchloremic acidosis occurs, even when the kidneys are not the source, the implication is that the kidneys are not responding appropriately and thus are somehow compromised. Hyperchloremic acidosis may arise from renal disease (renal tubular acidosis), treatment with chloride containing fluids (saline) or excessive GI loss of cations.

Unexplained (hyperchloremic) acidosis: Often as much as one-third of the acidosis is unexplained by lactic acidosis or hyperchloremia. This may occur because of partial loss of Donnan equilibrium of plasma. With severe capillary leak (or in the neonates with normal high capillary permeability and development of high capillary pressure) there will be a loss of albumin from the vascular space. To maintain charge balance Cl moves into the vascular space from the interstitium resulting in a hyperchloremic acidosis. Alternately, other cations may be present secondary to sepsis.

Metabolic alkalosis: Metabolic alkalosis occurs when there is an increase in SID from a loss of Cl, a decrease in unidentified anions or from an increase in cations (rare). Hypochloremic alkalosis is a common finding at birth in neonatal foals. The hyperchloremia is likely a compensatory change mediated through the placenta in the face of a more chronic intrauterine lactic acidosis. The lactic acidosis is probably cleared just before birth leaving the hypochloremic metabolic alkalosis. The hypochloremia may persist since renal regulation will not occur until the kidney has completed its transition from fetal physiology to neonatal physiology. After the birth transition, when alkalosis is from chloride loss in excess of Na, it may be chloride responsive or chloride resistant. Chloride responsive alkalosis frequently is from transient GI loss, post diuretic loss or post hypercapnia. In these cases treatment with chloride in the form of sodium chloride or potassium chloride and/or rehydration usually results in rapid correction of the alkalosis. Chloride resistant hypochloremic alkalosis is usually a result of ongoing loss from hormonal mechanisms and will only temporarily be corrected with chloride therapy.