Sepsis and Septic Shock

Sepsis and Septic Shock Definitions

- Sepsis
- Septicemia
- SIRS
- Severe Sepsis
- Septic Shock
- MODS
- ARDS
- CARS

Septic Shock

Most common cause of death
- Human SMICU
- Large animal NICU

Fatality rate
- Human medicine 20-80%
- NBC NICU - 137 cases
 Sepsis without shock - 17%
 Septic shock - 90%

Fatilities
- Refractory hypotension
- ARDS
- MODS
Sepsis and Septic Shock

Etiology

Infectious causes
- Bacterial infections
 - Gram negative pathogens – 60%
 - Gram positive pathogens – 40%
- Viral pathogens
- Fungal pathogens

Bacteremia detected in neonate
- Sepsis < 30%
- Septic Shock > 70%

Localized infections
May never isolate causative agent
Noninfectious causes

Septic Shock

Pathogenesis

Septic shock
Inflammatory response (SIRS)
Immunosuppression (CARS)

Concept of Sepsis

Initiators
- Bacteria
- Endotoxin
- Initiators

Immunology
- SIRS
- CARS

Tissue damage
- Endotoxemia
- Shock
- MODS
- Shock

Balance
- Cessation
- Shock
- Death
Initiation of Inflammatory Reactions

Gram-positive Bacteria
Gram-negative Bacteria
Viral agents
Fungal agents
Hypoxia ischemia
Trauma/burns

Innate Immunity

Inflammatory activators (TNF, IL-1, IL-6)

CARS ↔ SIRS

Septic Shock
Initiators of mediator response

Gram negative pathogens
- Endotoxin
- Formyl peptides
- Exotoxins
- Proteases

Gram positive pathogens
- Exotoxins
- Enterotoxins
- Hemolysins
- Peptidoglycans
- Lipoteichoic acid

Septic Shock
Mediator response

Toxins → Proinflammatory Cytokines (TNF, IL-1)

Secondary mediator cascade (IL-10, IL-4, PGE2, soluble TNF receptors, IL-1 receptor antagonists)

Local mediators (NO)

Hypotension
Cardiac depression
Tissue damage
Inflammatory Cascade

Cytokines
Complement activation
Endothelial activation
Platelet Activation, PAF
Macrophage activation
PMN activation

Pro-coagulation
Anti-coagulation
Kinins
Amines
Eicosanoids
Chemokines
Natural killer cells

Septic Shock
Pathogenesis - Cardiovascular effects

• Heart rate increases
• Cardiac output increases
• Systemic vascular resistance low
 Arteriolar tone is decreases - hypotension
 Venous tone decreased - venous pooling
• Pulmonary vascular resistance is high
 Right-to-left shunt
• Despite increase cardiac output
 Tissue hypoperfusion - malperfusion
 Increased lactate
 Decreased oxygen utilization

Septic Shock
Pathogenesis - Cardiovascular effects

• Decreased sensitivity to catecholamines
 Circulating vasodilator substances
 Adrenergic receptor down-regulation
• Loss of microvascular autoregulatory mechanisms
 Microvascular damage
• Distributive shock
 Maldistribution of blood flow
 Dilation of most vascular beds
 Constriction of some
Sepsis and Septic Shock

Portals of Entry

- GIT - Translocation
- Respiratory tract - Aspiration
- Placenta - *in utero*
- Umbilicus

Predisposing factors

- Placentitis – may be protective
- Prematurity
- Hypoxic-Ischemic disease
- Hypothermia
- FPT
- Stress
- Poor nutrition
- Poor husbandry

Localized Infections

- Pneumonia
- Enteritis
- Arthritis
- Osteomyelitis
- Meningitis
- Omphalitis
- Uveitis
Sepsis and Septic Shock

Signs of Sepsis

- Fever/hypothermia
- Loss of suckle, lethargy, weakness
- Tachycardia, tachypnea
- Injection, icterus – oral, scleral
- Petechia - oral, scleral, aural
- Hyperemic coronary bands
- Linear dermal necrosis
- Increased/decreased CRT
- Shock
Systemic Inflammatory Response Syndrome **SIRS**

- Over activation of the inflammatory response
- Constellation of signs
 - Fever or hypothermia
 - Leukopenia
 - Tachycardia, Tachypnea
- Septic Shock

SIRS damage **MODS**

- GI tract
 - Breach of the intestinal barrier
 - Translocation of bacteria
- Lungs
 - Acute Respiratory Distress Syndrome (ARDS)
- CNS
 - Breakdown blood brain barrier
 - Inflammatory mediators
 - Neurosteroid balance
- Renal failure
 - Decreased renal blood flow – vascular damage
 - Acute tubular necrosis

Recognition of SIRS

Release of inflammatory mediators

- Fever
- Tachycardia
- Tachypnea
- Vasodilatation (warm skin)
- Mild controlled infection or systemic responses
Recognition of SIRS/Septic Shock

Bounding pulses
- Widen pulse pressure
- Increased cardiac output
- Increased systemic vascular resistance

Hypoperfusion
- Somnolence
- Fall asleep on feet
- Decreased urine output

Before endothelial damage/dysfunction
- Intervention is most dramatic

Recognition of SIRS/Septic Shock

Shock progresses

Other signs of decreased perfusion
- Cool extremities
 - Secondary to increase vasomotor tone
 - Normal or high BP
 - Cold progressing to ice cold legs

Recognition of SIRS/Septic Shock

- Homeostatic mechanisms fail
 - Hypotension occurs
 - Pulse pressure narrows
- Legs cold
- Tachycardia
- Tachypnea
- Recumbent and nonresponsive
- Decreased cardiac output
- Hypoxia and metabolic acidosis
Sepsis and Septic Shock
Therapeutic interventions

Key interventions
• Treat underlying infection
• Provide hemodynamic support
• Support during MODS and metabolic crisis
• Block proinflammatory mediators

Sepsis and Septic Shock
Antimicrobials

• Penicillin
• Amikacin
• Cephalosporins
• Ticarcillin/clavulanic acid
• Imipenem
Septic Shock

Hemodynamic support

Goals

- Clear blood lactate
- Normalize perfusion
- Optimize cardiac output
- Increase systemic oxygen delivery

Hemodynamic support - Fluid therapy

Crystalloids or colloids?
- Crystalloid push
 - Bolus 20 ml/kg over 10-20 minutes
 - Reassess patient after every push
 - Blood pressure
 - Leg temperature
 - Peripheral pulse - arterial fill
 - Urine production
 - Mental status

Transfusions
- Plasma
- Whole blood

Don’t overhydrate

Pressors/Inotropes

- Therapeutic goal
 - Increase perfusion
 - Not “get good BP numbers”
- Inotropic effect most important
 - Increase cardiac output
- Pressor effect
 - Can negate inotropic effect
 - Hopefully will correct malperfusion
- Use a mix of inotropes and pressors
- Each patient - pharmacokinetic experiment
- Arrhythmias - tachycardia
Septic Shock
Pressors/Inotropes

- Dopamine
- Dobutamine
- Norepinephrine
- Epinephrine
- Vasopressin

Septic Shock
Oxygen therapy

- Optimize O2 availability
- Internasal O2 as soon as shock recognized
 - High flows 8-10 lpm
 - Utilize even if Pao2 appears adequate
- Ventilate early
 - Decrease work of breathing
 - 25% of O2 consumption to support respiration
 - Cardiovascular function improves
 - Make respiratory failure easier to manage
 - Modest PEEP
 - Decrease work of breathing, pulmonary resistance
 - Decrease hypoxia, need for high FIO2
 - Improve gas exchange with inhaled NO
Sepsis and Septic Shock

Nutritional Support

Sepsis is associated with
 • Hypermetabolism
 • Catabolism

Hyperglycemia
 • Catecholamine stimulated glycolysis
 • Catecholamine mediated insulin resistance
 • Insulin therapy
 • Strict glucose control

Hypoglycemia
 • Often profound, refractory hypoglycemia
 • Monitor blood glucose levels frequently
 • IV glucose therapy

Sepsis and Septic Shock

Inhibiting Toxic Mediators

Antitoxins - Antiendotoxin
Anti-interleukin-1 receptor
Antibradykinin, AntiPAF
AntiTNF, TNF antagonists, NSAIDs
Steroids, Interleukin-1 antagonists
Bradykinin antagonists, Modulate NO
Antiadhesion factors

Large clinical trials in man
 • Not show improvement of survival
 • Activated protein C (Xigris)
SIRS/Septic Shock

Inhibiting toxic mediators

Why the failures?

- Interactions are very complex
- Compensatory anti-inflammatory response syndrome (CARS)
- Genetic variations in mediators
- Timing – interactions

SIRS/Septic Shock

SIRS – CARS Balance

Effective therapy for septic shock await

- Understanding the interaction and balance
- Understanding the timing

Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008

R. Phillip Dellinger, MD; Mitchell M. Levy, MD; Jean-M. Carlet, MD; Julian R. Fun; MD; Margaret M. Parker, MD; Roman Juhata, MD; Norman Reinhart, MD; Derek C. Angus, MD; MPH; Christian Brachmann, MD; Richard Bode, MD; Thierry Calandra, MD; PhD; Jean-Francois Dhainaut, MD; Shing-Gerbad, MD; Mariana Harvay, RV; John J. Marshall, MD; John Marshall, MD; Marco Ranieri, MD; Graham Ramsay, MD; Jonathan Sevransky, MD; B. Taylor Thompson, MD; Sean Townsend, MD; Jeffrey S. Vender, MD; Janice L. Zimmerman, MD; Jean-Louis Vincent, MD, PhD; for the International Surviving Sepsis Campaign Guidelines Committee

Crit Care Med 2008; 36:296–327