Understanding Strong Ion Difference

Jon Palmer, VMD, DACVIM
Physicochemical Approach

Everything you always wanted to know about strong ion difference but were afraid to ask because of the calculations.
Acid-base
Strong Ion Difference

- Acid buffering – why and where
- Define cations, anions, strong ions
- Determinants of Acid/Base Status
 Weak ion buffer base, Strong ion difference
- Base Excess, Anion Gap, Strong Ion Gap
- Treatment Guidelines
- Metabolic acid-base control
- Metabolic acidosis
- Metabolic alkalosis
Abnormal Acid/Base Balance

- Predicts outcome
- Often not a direct cause the fatality
 Epiphenomenon
- Acid base homeostasis is defended like
 \(O_2 \) transport
 Perfusion pressure
Acid/Base Balance

- \([H^+]\) maintained within nmol/l range
 - Other electrolytes mmol/l range
 - 99.99% \([H^+]\) is buffered
 - The 0.01% not buffered determines the pH

- \([H^+]\) effects
 - H-bonds
 - Protein configuration
 - Receptor binding
 - Enzyme activity
 - Rate of glycolysis varies inversely with \([H^+]\)

- Water is an endless supply of H^+
Acid –Base balance

- **CO2 is an acid**
 - Excreted from cell - liberates H+ from H₂O
 - It returns H⁺ to water when it is exhaled
 - CO₂ + H₂O → H₂CO₃ → H⁺ + HCO₃⁻

- [H⁺] in tissues is very small
 - 1/1,000,000 of HCO₃⁻

- Neutral pH at 37°C = 6.8
 - At 0°C pH = 8.0
 - Arterial plasma pH 0.6 > neutral (pH = 7.4)
 - All species regardless of normal temperature
 - pH inside cell it is closer to neutral pH
Acid Buffering

- Plasma
 - Immediate buffering

- Interstitial Fluid
 - 15 min

- Bone
 - (40%)

- Intracellular
 - 2 – 4 hours

RBC
Acid/Base Balance

- **Intracellular pH primary importance**
 - pH varies between different cell types
 - pH varies within cellular compartments

- **ECF pH is important physiologically**
 - Conduit for O_2/nutrients to cell
 - It is the fluid that is sensed
 - It is the acid-base regulated by the body
 - pH varies transcellular fluid and interstitial fluid

- **Plasma pH/electrolytes measured**

- **Plasma pH/electrolytes predict intracellular levels**
 - Directly related
Acid Base measurements

Arterial vs. Venous sample

<table>
<thead>
<tr>
<th>Source</th>
<th>Venous blood</th>
<th>Arterial blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.162</td>
<td>7.347</td>
</tr>
<tr>
<td>P_{CO_2}</td>
<td>59.8</td>
<td>28.5</td>
</tr>
<tr>
<td>P_{O_2}</td>
<td>28.4</td>
<td>92.8</td>
</tr>
<tr>
<td>BE-B</td>
<td>- 7.3</td>
<td>- 7.8</td>
</tr>
<tr>
<td>HCO_3</td>
<td>21.5</td>
<td>15.7</td>
</tr>
<tr>
<td>TCO_2</td>
<td>23.4</td>
<td>16.6</td>
</tr>
<tr>
<td>Dextrose</td>
<td>18</td>
<td>50</td>
</tr>
</tbody>
</table>

Note: The values for the BE-B column are negative, indicating a metabolic acidosis in the venous sample and a metabolic alkalosis in the arterial sample.
Physicochemical Approach

- Conservation of mass
 But can have metabolism – e.g. lactate
- Electroneutrality
 Charges always balance
- To balance charge
 H^+ produced or donated from weak acid – changes pH
Cations and Anions

- **Cations**
 - Na$^+$, K$^+$, Ca$^{++}$, Mg$^{++}$, H$^+$

- **Anions**
 - Cl$^-$, Lac$^-$
 - Hgb, Alb, P$_i$
 - Ketones, SO$_4^{2-}$
 - Fatty acids, aspirate, glutamate
 - HCO$_3^-$
Cations/Anions

Cations

- H^+
- Mg^{++}
- Ca^{++}
- K^+

Na^+

Anions

- Cl^-
- P_i^-
- SO_4^{2-}
- Hb^-
- Alb^-
- Lac^-

HCO_3^-
Strong Ions

- Any ion which cannot combine with other ions
 - It is always free
 - Disassociated at physiologic pH
 - Always contributes a charge
- \(\text{Na}^+, \text{K}^+, \text{Cl}^-\)
- Not \(\text{HCO}_3^-\)
 - Weak ion
 - \(\text{HCO}_3^- + \text{H}^+ \rightarrow \text{H}_2\text{CO}_3 \rightarrow \text{CO}_2 + \text{H}_2\text{O}\)
 - Loses its charge
- Lactate is a strong ion
 - Completely disassociated at physiologic pH
Determinants of Acid/Base Status

- CO$_2$ (Pco$_2$)
- Nonvolatile weak ion acid buffer (A_{TOT})
- Strong Ion Difference (SID)
CO₂

• Quantitated as Pco₂

• CO₂ is in equilibrium with HCO₃⁻

 Can calculate HCO₃⁻

 Which is related to SID
Weak Ion Acid Buffer (Buffer Base)

- Buffer takes up or releases H^+ in physiologic range of pH changes
- Weak acid buffer
 - Volatile
 - Nonvolatile
- Volatile buffer HCO_3^-
 - Weak ion - can take a H^+
 - Cannot buffer CO_2 (itself)
 - Not prevent acid-base changes caused by CO_2
 - HCO_3^- is not independent
Nonvolatile Weak Ion Acid Buffer

- $A_{Total} = A^- + AH$
 - Hemoglobin
 - Albumin
 - Inorganic phosphates
- A^- changes with SID & Pco$_2$ – dependent
- A_{Total} not change – independent
- Good buffers
 - Even at extremes of concentrations
- There's no single dissociation constant
 - Large number of buffering sites
 - Most effective near normal pH
Nonvolatile Weak Acid Buffer

- **AH =**
 - In plasma – Albumin + P\textsubscript{i} - + SO\textsubscript{4}^{2-}
 - In RBC – Hb + P -

- **Estimate A-**
 - Using only total protein
 - Using albumin & PO\textsubscript{4}^{2-}
 - A- = 2 (albumin) + 0.5 (Pi)
 - pH < 7.35
 - A- = pH [(1.16 X albumin) + (0.42 X Pi)] – (5.83 X albumin) – (1.28 X Pi)
Cations/Anions
Weak Ion Acid Buffer

Cations

Na⁺

Anions

A⁻

HCO₃⁻

Cl⁻
Pᵢ⁻ SO₄²⁻
Alb⁻ Hb⁻
Acid/Base Balance

• As independent factors change
 \(CO_2, \text{ SID}, A_{\text{Total}} \)
 \[“+” = “-” \]
 Charges must remain balanced

• Dependent factors adjust
 To keep charge balanced and maintain pH
 \[A^- + H^+ \leftrightarrow AH \]
 \[H^+ + HCO_3^- \leftrightarrow CO_2 + H_2O \]
SID (Strong Ion Difference)

- Old concept - new name
 Is Buffer Base
 Change from normal = BE (Standard BE)

- Strong ions
 Lactate, Hydroxybutyrate, SO_4^{2-}, Na$^+$, K$^+$, Cl$^-$
 \[
 SID = (Na^+ + K^+ + Ca^{++} + Mg^{++}) - Cl^- \\
 SID = HCO_3^- + A^- \\
 SID = 40-42 \text{ (ICU patients = 30)}
 \]
Milligram-Milliequivalent Conversions

\[m\text{Eq/L} = \frac{(mg/L) \times \text{valence}}{\text{formula wt}} \]

\[mg/L = \frac{(m\text{Eq/L}) \times \text{formula wt}}{\text{valence}} \]

ATOMIC WEIGHTS OF SOME COMMON ELEMENTS*

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen (H)</td>
<td>1</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>24</td>
</tr>
<tr>
<td>Carbon (C)</td>
<td>12</td>
</tr>
<tr>
<td>Phosphorus (P)</td>
<td>31</td>
</tr>
<tr>
<td>Nitrogen (N)</td>
<td>14</td>
</tr>
<tr>
<td>Chlorine (Cl)</td>
<td>35.5</td>
</tr>
<tr>
<td>Oxygen (O)</td>
<td>16</td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>39</td>
</tr>
<tr>
<td>Sodium (Na)</td>
<td>23</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>40</td>
</tr>
</tbody>
</table>

*Atomic weights are approximate.
Milligram-Milliequivalent Conversions

- \(\text{Ca mEq/l} = \frac{\text{mg/dl} \times 10 \times 2}{40} \)
- \(\text{Ca mEq/l} = \text{Ca mg/dl} \times 0.5 \)
- \(\text{Mg mEq/l} = \frac{\text{mg/dl} \times 10 \times 2}{24} \)
- \(\text{Mg mEq/l} = \text{Mg mg/dl} \times 0.83 \)
Cations/Anions

SID

Cations

Mg$^{++}$
Ca$^{++}$
K$^{+}$

Na$^{+}$

Anions

SID

Cl$^{-}$
Base Excess

- **Definition**

 Blood gas measured pH and P_{co2}

 If adjust $P_{co2} = 40$
 - pH will change

 If adjusted pH $\neq 7.40$
 - Amount of added base needed to pH = 7.40

- **It eliminates the respiratory component**

- **It defines the metabolic derangement**

 Causing the abnormal pH
Base Excess

- **Base excess** =
 - Change in $A^- + HCO_3^-$ from normal
 - Change in SID from normal
- $+ BE = \text{metabolic alkalosis}$
- $- BE = \text{metabolic acidosis}$
- $BE = \text{SIDex}$
- $BE \text{ from ABG machine}$
 - Calculation assumes
 - $A_{TOT} = \text{blood with Hb of 5 g/dl and } P_{CO2} = 40$
Base Excess

- **Plasma alone**

- **RBC alone**
 - Much different from plasma
 - Estimated from plasma
 - Using Gibbs- Donnan equation - only measure plasma value

- **RBC + plasma = BE-B**

- **ECF – including plasma**
 - Estimated from plasma
 - Using Gibbs- Donnan equation - only measure plasma value

- **RBC + ECF = BE-ECF; SBE**
Standard Base Excess

- Metabolic abnormalities of the ECF
 ECF = plasma + RBC + interstitial fluid
 BE of whole blood + interstitial fluid
 ECF is the conduit for O_2/nutrients to cell
 It is the fluid that is sensed
 - It is the acid-base regulated by the body

- SBE = 0.9287 (HCO_3^- - 24.2 + 14.83 (pH - 7.4))
 SIDexcess of ECF
 Calculation assumes
 - A_TOT of ECF = blood with Hb of 5 g/dl and Pco2 = 40
Hyperchloremic Acidosis

Cations

Na⁺

↑H⁺

SID

BE

Anions

Cl⁻

AH

A⁻

HCO₃⁻

CO₂
BE
Lactic Acidosis

Cations

Na⁺

↑H⁺

Anions

Cl⁻

SID

Lactate H⁺

BE

SID

HCO₃⁻

Lac⁻

Na⁺

↑H⁺
Standard Base Excess

- If hemoglobin = 1 g/dl – error only 3 mM
- If $\text{Pco}_2 = 100$ – error only 3 mM
- Patients with varying protein buffer conc
 Respond similarly to abnormalities of acid-base
- $\text{SBE} = \text{SID change required to produce}$
 $\text{pH} = 7.4$ at $\text{Paco}_2 = 40$ with the prevailing A_{TOT}
 Amount $\uparrow P_{\text{Na}}$ (with Na bicarbonate) to correct
Cations/Anions
SID

Cations

Mg$^{++}$
Ca$^{++}$
K$^{+}$

Na$^{+}$

Anions

SID

A$^{-}$
HCO$_3^{-}$
Cl$^{-}$
Anion Gap

• \(\text{Na}^+ + \text{K}^+ = \text{Cl}^- + \text{HCO}_3^- + \text{A}^- \)

• \(\text{AG} = (\text{Na}^+ + \text{K}^+) - (\text{Cl}^- + \text{HCO}_3^-) \)
 \(\text{AG} = \text{A}^- = \text{ionized albumin} + \text{P}_i^- \)

• **Normal AG range is large**

 Because albumin + \(\text{P}_i \) range large

 Hypoproteinemia - normal AG with lactic acidosis

• **Usually measured in venous blood**

 With \(\text{Tco}_2 \) used to estimated \(\text{HCO}_3^- \)
Cations/Anions
Anion Gap

Cations

| H+ | Na+ | K+ |

Anions

| AG | A- | A- | HCO3- | HCO3- | Cl- | Cl- | Lac- | AG |
Anion Gap Acidosis
Artifacts

- Dehydration
 Concentrating all ions
- Na salts
 High doses Na penicillin (beta lactams)
 Na lactate
 Na acetate
- Decreased unmeasured cations
 ↓Mg
 ↓Ca
- Hypoalbuminemia
 Severe
 ↓AG by 2.5-3 mEq/l for each 1 g/dl decrease
Anion Gap Acidosis
Artifacts

- Respiratory and metabolic alkalosis
 \(\uparrow 3-10 \text{ mEq/liter in apparent AG} \)

- Parenteral nutrition
 Formulas with acetate

- Multiple blood transfusions
 Increased citrate
 Large volumes

- Unidentified cations
Corrected Anion Gap

- ICU patient
 - Albumin and P_i not normal
 - Unmeasured anions which make normal gap
- As long as $pH < 7.35$
 - "Normal" AG
 - $\text{AG} = A^- = pH \left[(1.16 \times \text{albumin}) + (0.42 \times P_i) \right] - (5.83 \times \text{albumin}) - (1.28 \times P_i)$
Strong Ion Difference vs. Anion Gap

• Strong Ion Difference

\[\text{SID} = (Na^+ + K^+ + Ca^{++} + Mg^{++}) - (Cl^- + Lac^-) \]

• Anion Gap

\[\text{AG} = (Na^+ + K^+) - (Cl^- + HCO_3^-) \]
Strong Ion Gap (SIG)

- SID effective
 \[= A^- + HCO_3^- \]
 \[= \text{SIDe} \]

- SID apparent
 \[= (Na^+ + K^+ + Ca^{++} + Mg^{++}) - (Cl^- + Lac^-) \]
 \[= \text{SIDa} \]
 \[= 40-42 \text{ (healthy human)} \]

- SIDe = SIDa
 If not there are unmeasured ions
 Difference is SIG
Metabolic Acidosis
Increase in Unidentified Anions
SIG < 0
Metabolic Alkalosis
Unidentified Cation Alkalosis
SIG > 0
Strong Ion Gap (SIG)

- \(\text{SIG} = \text{SID}_e - \text{SID}_a \)
- \(\text{SIG} < 0 \) – unmeasured anions
 - Sepsis
 - Liver disease
 - Liver clears unmeasured anions
 - With sepsis, failure \(\rightarrow \) liver releases anions
 - If lactate is not part of \(\text{SID}_a \)
 - Most common cause of \(\text{SIG} > 0 \)
 - Lactate mmol/l = SIG
- \(\text{SIG} > 0 \) – increased unidentified cations
- SIG does not change with
 - pH changes
 - Changes in albumin
Metabolic Acidosis

- Metabolic acidosis
 - ↓ SID → Results in ↑ free H+ → acidosis
- ↓ SID
 - ↑ Organic acids – ↑ Lactate, ↑ Ketones
 - Loss of cations – diarrhea
 - Mishandling of ions -- renal tubular acidosis
 - Addition of exogenous ions -- iatrogenic, poisoning
- Treat metabolic acidosis
 - ↑ Na⁺ > ↑ Cl⁻ e.g. NaHCO₃
Metabolic Alkalosis

- **Metabolic alkalosis**
 - ↑SID → Results in ↓ free H+ → alkalosis
- **↑SID**
 - Loss of anions > cations
 - Diuretics
 - Renal disease
- **Treatment**
 - cations > anions
 - Replacing Cl⁻ e.g. NaCl, KCl, HCl
 - Cl resistant alkalosis
 - Only because of ongoing renal loss of Cl⁻ - RTA
 - Hyperaldosteronism
Pathophysiology
Disorders of acid-base balance

- Acid-base abnormalities
 Only occur with failure to compensate
 - Disorders primary regulating organs
 - Exogenous drugs/fluids
 Alter ability to maintain acid-base balance
 - Abnormal metabolism
 Overwhelms ability of defense mechanisms

- SID is regulated by the kidneys/GI tract
Acid-Base Balance
Renal Regulation

- Renal excretion strong ions
 Most reabsorbed automatically
 Only able to excrete small amounts per min
 Thus it takes hours for a renal response
- Diet – similar ratios of strong cations/anions
 Sufficient Cl available to filter
 If not reabsorbed – ↑SID
- Cl excretion – primary regulating mechanism
 Na/K handling – other priorities – not acid-base
Pathophysiology
The Kidney - Urine pH

• Independent of plasma pH
• Independent of renal "acid" excretion
• \(\text{pH} = \text{amt H}^+ \)
 Not amt \(\text{NH}_4^+ \)
 Not amt other “fixed acids”
Can have high rate acid excretion
 • But alkaline urine pH
Pathophysiology
Ammoniagenesis

• Excrete Cl\(^-\) without Na\(^+\) or K\(^+\) - regulate SID

 As Cl\(^-\)NH\(_4^+\)

• Renal-Hepatic Interaction

 NH\(_4^+\) – co-excretion with Cl\(^-\)

 • Not because the H\(^+\)

 NH\(_4^+\) produced in the kidney and liver
Pathophysiology
Ammoniagenesis

• Hepatic glutaminogenesis
 Stimulated by acidosis

• Nitrogen metabolism in liver
 → Urea, glutamine, (NH$_4^+$)
 Glutamine → kidney → ↑NH$_4^+$ → ↑Cl$^{-}$ excretion
 ↑Glutamine → alkalosis by ↓Cl$^{-}$ relative to Na$^+$
Hepatocyte with urea production capacity

Closer to portal vein

GI tract NH_4^+ \rightarrow urea first

Acidosis inhibits urea formation

- NH_4^+ to glutamine producing cells \rightarrow
 - \uparrowGlutamine production \rightarrow

- Kidney \rightarrow NH_4^+ \rightarrow \uparrowCl$^-$ loss \rightarrow compensatory Alk
Pathophysiology
Gastrointestinal tract

- Important cause of acid-base imbalance
- *Stomach* – Cl⁻ pumped out of plasma →
 ↓SID in gastric juices → acid
 ↑SID in plasma → "Alkaline tide" with meal
- *Duodenum* – Cl⁻ is reabsorbed →
 Return SID of plasma
- Reflux → loss of Cl⁻ → alkalosis (↑SID)
- *Pancreas* -- fluid has ↑SID (↓Cl⁻) →
 Plasma ↓SID → peaks after meal (counter act alkaline tide)
 If reflux → plasma remains acidotic (↓SID – ↑Cl⁻)
Pathophysiology
Gastrointestinal tract

• **Colon** -- fluid ↑SID
 Most of Cl⁻ removed in small intestine
 Na⁺/K⁺ left in lumen
 Should absorb Na⁺ and water
 - If diarrhea → lose Na⁺/K⁺ relative to Cl⁻ → acidosis

• **Can GI tract compensated in acidosis/alkalosis??**
 Not been studied
 Endotoxemia may remove anions →
 • ↑SID in plasma → ↑alkalosis
Clinical Effects Of Metabolic Acidosis

• Brief exposure to acidosis well tolerated
 Exercise - pH < 7.15, lactate > 20 mEq/liter

• Chronic mild acidosis (pH < 7.35)
 Metabolic bone disease
 Protein catabolism

• Critically ill patients
 Not tolerate even brief acidosis

• Metabolic acidosis patients
 Poorer outcome than respiratory acidosis
 Cause more important than degree of acidosis
 Epiphenomenon
Potential Clinical Effects of Metabolic Acidosis

- **Cardiovascular**
 - ↓Inotropy
 - Conduction defects
 - Arterial vasodilation
 - Venous vasoconstriction

- **02 Delivery**
 - ↓Oxyhemoglobin binding
 - ↓ 2,3-DPG (late)

- **Electrolytes**
 - ↑K, ↑Ca
 - Hyperuricemia
Potential Clinical Effects of Metabolic Acidosis

- **Neuromuscular**
 - Respiratory depression
 - Decreased sensorium
- **Metabolism**
 - Protein wasting
 - Bone demineralization
 - Insulin resistance
 - Catecholamine stimulation
 - PTH stimulation
 - Aldosterone stimulation
ICU Patients

Cations

Na⁺

SID

Anions

A⁻

Cl⁻

A⁻

SID
Metabolic Acidosis

- ICU patients SID = 30
 - Less reserve
 - ↑Lac or ↑NaCl treatment → more effect
 - Have lower SID without evidence of acidosis
 - Secondary to ↓alb → ↓A-
 - No compensatory ↓Pco2 for other reasons
 - So must ↓SID to maintain the pH

- ↓SID → ↓pH not linear
 - As SID < 20 → greater ↓pH
 - As SID approaches 20 → small insult ↓↓↓pH
Metabolic Acidosis
Strong ion acidosis

- Lactic acidosis
- Hyperchloremic acidosis
Lactic Acidosis

- Cardinal sign of septic shock
 Synonymous with hypoperfusion
 Mistakenly used as a gauge of perfusion
- Common in septic patients
 With good perfusion
Source of Lactate in Sepsis

- **Septic shock**
 - Increase ATP requirement
 - Anaerobic metabolism
 - Rapid increase lactate levels

- **Sepsis without shock**
 - “Stress” lactic acidosis
 - Cytokine mediated
 - IL-1beta, IL-6 and TNF alpha
Normally

Glucose ➔ Glucose

glycolysis

Pyruvate dehydrogenase

Pyruvate ➔ Lactate ➔ Pyruvate

Acetyl-CoA

Kreb’s Cycle

Lactate ➔ Lactate

α-ketoglutarate ➔ Isocitrate • OOA ➔ Citrate
Acetyl-CoA
Citrate
Kreb's Cycle
Pyruvate
glycolysis
Glucose
Lactate
Traditional view
O2
Pyruvate dehydrogenase
α-ketoglutarate
Isocitrate
Glucose
Lactate
Pyruvate
Glucose → glycolysis → Pyruvate → Acetyl-CoA → Kreb’s Cycle

But ...

Pyruvate dehydrogenase

Lactate → Pyruvate
Glucose → glycolysis → Pyruvate → Acetyl-CoA → Kreb’s Cycle

- Lactate
- Pyruvate dehydrogenase
- OOA
- Citrate
- α-ketoglutarate
- Isocitrate

But ...
Lactate Sources

- **Tissue Hypoxia**
 - Hypodynamic shock
 - Organ ischemia

- **Hypermetabolism**
 - Increased aerobic glycolysis
 - Increased protein catabolism
 - Increased muscle activity – shivering

- **Decreased Clearance of Lactate**
 - Shock – poor liver perfusion
 - Cytokine-mediated
 - Liver failure

- **Inhibition of Pyruvate Dehydrogenase**

- **Activation of Inflammatory Cells**
Source of Lactate in Sepsis

- Pyruvate dehydrogenase block
 - Cytokine down-regulation
 - Relative thiamine deficiency
 - Forces glucose → lactate production

- SIRS Hypermetabolism
 - Increase cellular glucose uptake
 - Stress hormone mediated
 - Epinephrine
 - Cytokine-mediated modulation of glucose transporter
 - ↑ synthesis
 - ↑ activity
 - ↑ distribution
 - ↑ glucose entry into cells
 - Mass action → ↑ glycolytic flux → ↑ lactate production
Source of Lactate in Sepsis

- Phagocytes major cellular source
 Required energy for respiratory burst
 Occurs where macrophages are active
 - Damaged organ or site of trauma
 - Liver, spleen, gut, lung, wound

- Decreased hepatic lactate clearance
 Sepsis impairs liver clearance
Lactate Accumulation
Epinephrine Surge

- After injury, in sepsis, at birth
- Stimulates $\text{Na}^+:\text{K}^+$ ATPase
 - $\uparrow\uparrow$ Aerobic glycolysis $\rightarrow\uparrow$ lactate production
 - Coupled to $\text{Na}^+:\text{K}^+$ ATPase activity in muscle
 - At rest, $< 10\%$ of its total $\text{Na}^+:\text{K}^+$ ATPase
 - Maintain Na:K gradients
Lactate Accumulation

Epinephrine Surge

- \(\uparrow \) Activity \(\text{Na}^+:\text{K}^+ \) ATPase
 - \(\uparrow \) Lactate production
 - Under well-oxygenated conditions

One cause of \(\downarrow \text{K} \)

- Inhibition of \(\beta_2 \)-adrenoreceptors
 - Prevents muscle associated lactate increase
 - Confirms mechanism Epinephrine increase lactate

- Epinephrine results in
 - Lactatemia
 - Hypokalemia
Lactate Accumulation
Clearance by Tissues

- Liver
 Large capacity for lactate removal
- Other organs
 Kidneys
 GI tract
 Muscles
- Lactate clearance reduced by
 Sepsis
 Alkalosis
 Acidosis (pH < 7.20)
 Liver failure
Hyperlactatemia without acidemia

- Large quantities of Na lactate administered
 Alkalemia occurs as lactate is metabolized
- Chronic lactate accumulation
 Chloride ions move out of the vascular space
 Compensatory increase SID
- Endogenous hyperlactatemia
 Initially always associated acidosis
 Normal pH or alkalosis
 - Suggests relative chronicity
 - Hypochloremic increase SID
Lactic Acidemia

- Nonspecific marker of hypoperfusion
- Important marker of tissue distress

Malmetabolism
Lactate Levels
Hypoperfusion

- Traditionally
 Increased blood lactate = hypoxia/hypoperfusion
 Tissue hypoxia \rightarrow MODS/death
- Fundamental goal of therapy
 Restoration of cellular oxygen delivery
- Reliable indicators of adequate perfusion
 Warm legs
 Strong peripheral pulses
 Organ function - Urine output, Mental status, Borborygmi
- Lactate levels elevated
 With hypoperfusion
 With normal perfusion
- Decrease lactate levels
 A goal of cardiovascular support
 Not exclusive goal
 Pressor therapy may cause significant increase lactate
Lactate Levels

Hypoperfusion

- Blood lactate
 - Guide to resuscitation
- Epinephrine surge
 - Occurs
 - Normal birth
 - SIRS - Sepsis/septic shock
 - Hypoxic ischemic asphyxial insult
 - Greatly accelerate aerobic glycolysis and lactate production
 - Coupled to Na+: K+ ATPase activity in skeletal muscle
- Significant proportion ↑ blood lactate
 - Unrelated to poor tissue perfusion
 - Not respond to supranormal oxygen delivery
- Increased Na+: K+ ATPase activity
 - →↑lactate production under well-oxygenated conditions
 - Erythrocytes, vascular smooth muscle, neurons, skeletal muscle
Lactate

Enteric Bacteria

- Lactate produced by enteric bacteria
 Absorbed, produce lactic acidosis
 D-lactate
 - Endogenous lactate is L-lactate
- D-lactic acidosis
 Detection
 - Some assays for lactate only report L-lactate
 - Some assays report total lactate
 - Special D-lactate assays
 Will appear as unidentified anion if not assayed
- Metabolism
 Will be catabolized through L-lactate pathway
 Clearance is slower than D-lactate
Lactate

“High-octane” Fuel During Sepsis

- **High energy fuel for heart**
 - Allows maintenance of CO
 - Blocking lactate production:
 - Pronounced low flow state
 - Profound hypotension
 - Heart is a “metabolic omnivore”
 - Fatty acids (60-90%), glucose, lactate, and other

- **Energy for CNS during HI insults**
 - Protective – prevents lesions
 - Maintains CNS metabolism
 - High levels toxic to neurocytes

- **Lactate production**
 - Adaptive event in response to energetic crisis
SIG acidosis
Anion gap acidosis
Unmeasured anions

- Renal failure
- Ketoacidosis
 Starvation
 Metabolic errors
- Toxins
 Ethylene glycol
 Salicylates
- Sepsis/endotoxemia
 Lactic acidosis
 Other
- Liver disease
Non SIG acidosis
Non anion gap acidosis
SID acidosis

- **Hyperchloremic acidosis**
 \[^{\text{↑Cl}^-}\] relative to \[^{\text{Na}^+}\]
 Loss of cation relative to \[^{\text{Cl}^-}\]

- **Renal Acidosis – often some role**
 Renal response \(\rightarrow^{\text{↑Cl}^-}\) excretion in urine
 Kidney must be source of acidosis since
 - \[^{\text{↑plasma Cl}^-}\] rather than \[^{\text{↓plasma Cl}^-}\]

- **Extrarenal Acidosis (\[^{\text{↑Cl}^-}\])**
 From treatment with \[^{\text{Cl}^-}\] (NaCl)
 Lower GI tract cation loss without loss of \[^{\text{Cl}^-}\]
SID acidosis

• GI tract

Diarrhea

• Diarrhea fluid Na⁺ > Cl⁻ similar to plasma
• If treat with a NaCl → ↑Cl⁻ →↓SID
• If treat with SID balanced fluids
 Will not happen

Small intestinal disease
SID acidosis

• Iatrogenic
 TPN/PPN
 • Contains balance of weak anions (e.g. acetate) + Cl\(^-\)
 If acetate<< Cl\(^-\) then plasma Cl\(^-\) ↑ → ↓SID

Saline – dilutional acidosis

• Critical patient - already have lactic acidosis, can't change
 ventilation to compensate, have ↓A_TOT (↓albumin)
• Treated 5-10X plasma volume → significant acidosis
• Unlike normal patient treated with NaCl
Renal Acidosis

- Renal failure
 - Uncomplicated renal failure no acidosis
 - Hyperchloremic acidosis ↓SID
 - Na wasting > Cl excretion
 - Failure of Cl excretion without Na
 - Chronic ↑sulfates ↓SID
- Treat with NaHCO$_3$ → ↑SID
 - If Na$^+$ concentration is too high treat with Ca$^{++}$
 - But little ↑SID because of small normal range Ca
- Renal tubular acidosis
Renal Tubular Acidosis

- Defect in all types of RTA
 - Inability to excrete Cl⁻ in proportion to Na⁺
- RTA type I – distal
 - Impaired Na⁺ transport cortical collecting ducts
 - Treat NaHCO₃ → respond
 - K⁺ deficient/hyperkalemic form
Renal Tubular Acidosis

- **RTA type II - proximal**
 - Na$^+$ & K$^+$ reabsorption defect
 - Franconi Syndrome – glu, PO$_4$, urate, aa reabsorption defects
 - Treat Na HCO$_3$ → just ↑losses and not work

- **RTA type IV**
 - Aldosterone deficiency or resistance
 - ↑serum K and low urine pH (< 5.5)
 - Often caused by NSAIDs, heparin, K sparing diuretics
 - Discontinue drugs
Unexplained metabolic acidosis

- **Lactic acidosis**
 More acidotic than explained by lactate level

- **Sepsis**
 Acidosis without ↑ lactate
 - Could be D-lactate
 May be secondary to ↑ Cl⁻
 Unexplained anions released from liver
 - Normally liver clears unmeasured anions

- **Often ⅓ of acidosis is unexplained**
 Loss of Donnan equilibrium of plasma
 Capillary leak – loss of albumin from vascular space
 Cl⁻ moves into vascular space to balance loss
 Hyperchloremic acidosis with ↓ SID
Metabolic Alkalosis
Metabolic Alkalosis
Strong Ion Alkalosis
Increased SID

Strong Cations ↓H⁺

SID

Strong Anions ↓Cl⁻
Metabolic Alkalosis
Unidentified Cation Alkalosis
SIG > 0
Metabolic Alkalosis

- Metabolic alkalosis
 \[\text{↑SID} \rightarrow \text{Results in ↓ free H}^+ \rightarrow \text{alkalosis} \]

- ↑SID
 - Loss of anions > cations
 - Diuretics
 - Renal disease
Metabolic alkalosis

- ↑SID

 Loss of Cl⁻ -- ↓anions
 - or from ↑cations (rare)

 Cl⁻ loss > Na

- Cl⁻ Responsive

- Cl⁻ Resistant
Potential Clinical Effects of Metabolic Alkalosis

- **Cardiovascular**
 - ↑Inotropy (Ca\(^++\) entry)
 - Altered coronary blood flow (↑/↓)
 - Digoxin toxicity

- **\(O_2\) Delivery**
 - ↑Oxyhemoglobin affinity
 - ↑2,3-DPG (delayed)
Potential Clinical Effects of Metabolic Alkalosis

- **Neuromuscular**
 - Neuromuscular excitability
 - Encephalopathy
 - Seizures

- **Metabolic Effects**
 - ↓K
 - ↓Ca
 - ↓PO4
 - Impaired enzyme function
Metabolic alkalosis
Cl Responsive

• Cl⁻ loss easily treated

Cl⁻ loss > Na⁺

Temporary loss – compensation

Not ongoing (Ucl low)

• Gastrointestinal

Reflux, Cl wasting diarrhea
Metabolic alkalosis
Cl Responsive

• Post diuretic
 Volume contraction \rightarrow↑aldosterone \rightarrow↑Na reabsorption
 But also ↑K and Cl⁻ loss \rightarrow alkalosis

• Post chronic lactic acidosis
 ↓Cl⁻ as compensation for acidosis
 Lactic acidosis may resolve quickly
 Residual hypochloremic alkalosis

• Post hypercapnia – metabolic compensation
 Hypercapnea resolves quickly
 Residual hypochloremic alkalosis
Metabolic alkalosis
Cl Responsive

• Treatment
 Replace Cl with NaCl, KCl

• Dehydration usually present
 ↑ SID – corrected with saline
Metabolic Alkalosis
Cl Resistant

- Renal dysfunction
- Cl⁻ loss is ongoing (Ucl high)

Hormonal mechanisms
- Mineralocorticoid excess
- Primary/secondary hyperaldosteronism
- Cushing syndrome
- Liddle’s syndrome
- Bartter’s syndrome
- Excessive corticoids
- Excessive licorice intake (mimics aldosterone)

Ongoing diuretic use
Metabolic Alkalosis
Cl Resistant

• Only temporarily correct with Cl⁻ therapy
 Urine Cl⁻ > 20 mmol/l
 Saline therapy may temporarily correct SID

• Ongoing renal loss results in return ↑ SID
 ↑ Mineralocorticoid activity
Metabolic acid-base therapy

• If Na/Cl levels normal
 Don’t use Na/Cl in therapy

• If Na/Cl abnormal
 ↑ Na – NaHCO₃
 ↑ Cl – NaCl

• If ↑ lactate (↑ SIG, ↑ AG)
 ↑ metabolic clearance
 ↓ epinephrine levels
 ↓ hypermetabolism
 Don’t treat with NaHCO₃
 • After lactate ↓ - Na remains - ↑ SID
 • But pH < 7.20 liver may not clear lactate well