Electrolyte Abnormalities in Neonates

Jon Palmer, VMD, DACVIM
Director of Neonatal/Perinatal Programs
Graham French Neonatal Section, Connelly Intensive Care Unit
New Bolton Center, University of Pennsylvania

Electrolyte Abnormalities
- Sodium/Water Balance
- Hyponatremia/Hypernatremia
- Hypokalemia/Hyperkalemia

Sodium and Water Homeostasis
- Sodium
 - Tight regulation
 - RAA system
 - Sympathetic NS
 - Atrial Natriuretic Peptide
 - Brain Natriuretic Peptide
 - Closely correlated ECV
 - Vascular volume
 - Serum water
- Water
 - ADH
 - Osm – 1-2% change
 - Baroreceptors
 - Osmolarity and effective perfusion
Sodium/Water Balance

- Transition from fetal physiology
 - Late term fetus
 - High F_{Na}
 - Transition – to low F_{Na}
 - Most species during 1st day
 - Fetal foal - before birth
- Sodium conserving mode
 - Na requirement for growth
 - Bone growth
 - ↑ body mass
 - Increase in interstitial space
 - Milk diet
 - Fresh milk is sodium poor
 - 9-15 mEq/l

Sodium/Water Balance
Sodium Overload

- Sodium containing intravenous fluids
 - 6-7 mEq Na/kg/day
 - Mare’s milk – 1.8 mEq Na/kg/day
 - 3-4 X normal Na
- Sodium overloading
 - Expansion of the extracellular fluid space
 - Sodium fractional excretion will remain low
 - Difficulty dealing with volume loading

Hyponatremia
Email Me 09

<table>
<thead>
<tr>
<th>Date</th>
<th>Na</th>
<th>K</th>
<th>Cl</th>
<th>Tco2</th>
<th>SID</th>
<th>Lac</th>
<th>pH</th>
<th>Cr</th>
<th>Urea</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/23</td>
<td>110</td>
<td>2.5</td>
<td>73</td>
<td>16</td>
<td>41</td>
<td>?</td>
<td>?</td>
<td>10.2</td>
<td>143</td>
</tr>
<tr>
<td>11/24</td>
<td>117</td>
<td>2.2</td>
<td>87</td>
<td>16</td>
<td>33</td>
<td>1.4</td>
<td>?</td>
<td>3.77</td>
<td>90</td>
</tr>
<tr>
<td>11/25</td>
<td>121</td>
<td>2.9</td>
<td>95</td>
<td>18</td>
<td>29</td>
<td>2.4</td>
<td>7.219</td>
<td>2.58</td>
<td>51</td>
</tr>
</tbody>
</table>

Email Me 09

- Usg = 1.011
- UpH = 5
- Upro +
- Uglu neg
- WBC – 0
- RBC – 0
- Casts – 0
- Epith cells – 1 clump, few other
Email Me 09

- pH 7.29
- Pco2 41.8
- BE -11
- Tco2 18
- SID 29

Hyponatremia

- Spurious hyponatremia
- Dilutional hyponatremia
- Depletional hyponatremia
- Redistribution hyponatremia

Spurious Hyponatremia

- Normal plasma sodium concentration
- Laboratory reports a low concentration
 - Presence of interfering substances
 - Lipids or large proteins
 - Artificially dilutes sample
 - Not with modern assay techniques
 - Mistakes in sampling
 - Venipuncture site distal to a low Na drip
 - Sample is taken from a catheter drip
 - Infusion of a low Na solution
 - Insufficient dead space clearing
Dilutional Hyponatremia

- Lack of balance
 - Fluid intake/urine output
- Loss of integrity of the urinary system
 - Ruptured bladder
 - Ruptured/necrotic urachus
 - Fenestrated ureters
- Renal failure
 - Low GFR
 - Na wasting

Dilutional Hyponatremia

- Failed/delayed renal transition fetal to neonatal physiology
 - Low GFR
- Water overload
 - Management mistakes
 - Dilute milk replacer
 - Excessive water enemas (retained)
 - Fluid therapy errors (Na wasting renal syndromes)
 - Syndrome of inappropriate antidiuresis (SIA)
 - Appropriate antidiuresis
 - Decreased arterial volume

Dilutional Hyponatremia

- Most common form hyponatremia in neonates
- Only occurs with intake of hyponatremic fluid
 - Fresh milk
 - Hyponatremic rehydration formulas
 - Dextrose in water or half strength saline
 - Not with isotonic Na containing fluids
 - Normisol-R, Lactated Ringers, Plasmalyte
 - Less marked on milk replacer than fresh milk
Hyponatremia

Syndrome of Inappropriate Antidiuresis (SIAD)

- SIADH
 - Syndrome of Inappropriate Antidiuretic Hormone Secretion
- Hyponatremia secondary to
 - Inappropriate reabsorption of water from urine
- Diagnosis
 - High urine osmolarity
 - Hyposmolar hyponatremia - plasma
 - Normal renal function
 - Normal adrenal function
 - Euvolemia
 - Can have excessive renal sodium excretion
 - Often absent in the neonate
 - Low sodium intake

- Clinical syndrome
 - Sudden decrease in urine output
 - High urine specific gravity
 - Weight gain
 - 10-15% of body weight overnight
 - No edema
 - Decreasing plasma sodium concentration
 - ADH increased
 - No osmotic stimulus
 - No hypovolemic stimulus

- Inappropriate vasopressin release
 - Erratic and unpredictable release vasopressin
 - Reset of the osmostat
 - Threshold for release is lowered
 - Vasopressin release not fully suppressed at low osmolality
 - But normal at higher osmolality
 - Receptor abnormality (vasopressin release normal)
 - Hypersensitive receptors
 - Receptors continue to respond
 - After vasopressin levels decrease
 - Hypovasopressinemic antidiuresis
Hyponatremia

Syndrome of Inappropriate Antidiuresis (SIAD)

- SIAD not SIADH
 - High urine osmolarity
 - Hyposmolar hyponatremia
 - Hypovolemia
 - Appropriate vasopressin release
 - Defense of volemia

- Nonosmotic ADH release
 - Subclinical volume depletion
 - Pain, Stress
 - Abnormal adrenal function
 - Increased ACTH
 - Stimulate ADH release
 - Cortisol deficiency
 - Reduced CO and BP
 - Non-osmotic ADH release
 - Aldosterone deficiency
 - Na wasting, reductions in ECV
 - Non-osmotic ADH release
 - Abnormal renal function

Depletional Hyponatremia

- Na loss > water
- Diarrhea
 - Excessive sodium loss in feces
 - Rehydration with Na poor fluids
 - Fresh/frozen milk
 - Fresh water
- Renal sodium wasting
 - Tubular disease
 - Use of diuretics
 - Endocrine disturbances
 - Rehydration with Na poor fluids
 - Fresh/frozen milk
 - Fresh water
Redistribution Hyponatremia

- Low sodium concentration
- Osmolarity normal
- Isosmotic hyponatremia
- Hyperosmotic hyponatremia
- Other osmotically active particles present
- Redistribute fluid from intracellular space
 - Appropriate decrease Na concentration
 - Hyperglycemia (Na, Glu in mmol/L)
 - $Na_{\text{corrected}} = Na_{\text{measured}} + \left(\frac{\text{Glu}}{100} \times 1.6 \right)$
 - 1.6 mEq/l Na decrease for 100 mg/dl glu increase
 - Iatrogenic addition of osmoles
 - Mannitol
 - Extreme hyperproteinemia
 - Secondary to sick cell syndrome

Hyponatremia

Sick Cell Syndrome

- Critically ill patients
 - Cellular insult
 - Loss of cell wall integrity
 - Solutes leak
 - Fluid follows
 - Dilution of extracellular sodium

Hyponatremia

Clinical Assessment

- Classify hyponatremia
 - Hypervolemic
 - Euvolemic
 - Hypovolemic
Hyponatremia Clinical Assessment

- Hypervolemic hyponatremia
 - Impaired water excretion
 - Ruptured bladder
 - Renal failure
 - Decreased GFR
 - Failure to dilute urine
 - Hypovolemia leading to fluid retention
 - Congestive heart failure
 - Hypovolemia – non-osmotic ADH
 - Poor renal perfusion
 - RAS
 - Increased sympathetic tone
 - Na retention and volume retention
 - ADH excess

- Hypovolemic hyponatremia
 - Splanchnic/systemic vasodilatation
 - Decreased ECV
 - Non-osmotic release of ADH
 - Increased total body water + Na
 - Water > Na
 - Edema, ascites
 - Decreased arterial volume/BP
 - Stimulate ADH secretion

- Euvolemic hyponatremia
 - Most common in human hospitalized patients
 - ADH mediated water retention
 - Increased ICF
 - Iatrogenic
 - Rx hypotonic fluids in patients
 - In the face of increased ADH secretion
 - Total body Na normal
 - No edema
 - Defines euvoletic
Hyponatremia
Clinical Assessment

- Hypovolemic hyponatremia
 - Deficit water & Na
 - Na deficit > water deficit
 - Fluid loss – renal water retention (ADH)
 - Etiology
 - Diarrhea
 - Na wasting nephropathy
 - Diuretics
 - Hemorrhage
- Appropriate ADH secretion
 - Non-osmotic release
 - Retain water because of hypovolemia
 - Further decreasing osmolarity

Cerebral Salt Wasting Syndrome
CSWS

- Hypothalamic-Renal Axis disease
- Characterized by
 - Natriuresis
 - Volume depletion
 - Followed by water retention
 - ADH induced
- Clinical findings
 - Hypovolemia
 - Hyponatremia
 - Inappropriately high urine osmolality
 - Increased urine Na (> 40 mEq/l)

Cerebral Salt Wasting Syndrome
CSWS

- Pathogenesis????
 - Increased SNS outflow
 - Increased atrial and brain natriuretic peptides
- Traumatic intracranial injury
- Differentiate from SIADH
 - CSWS
 - Volume depletion
 - Increased urine sodium excretion
 - Before development of hyponatremia
 - SIADH
 - Euvolemic or hypervolemic
 - Low/normal urine Na (in neonate)
Hypotonic Hyponatremia
Clinical Findings
- Asymptomatic or symptomatic
- Severe
 - < 115 mEq/l – arbitrary definition
- Acute
 - < 36-48 hr
- Progressive brain edema
 - Weakness, depressed reflexes
 - Obtunded, abnormal sensorium
 - Hypothermia
 - Cheyne-Stokes respiration
 - Seizures, Coma
 - Brainstem herniation
 - Respiratory arrest

Hypotonic Hyponatremia
Brain Edema
- Abrupt hypo-osmolarity
 - Aquaporin-4 mediated
 - Water moves into brain cells
- Compensation
 - Decreased cerebral venous pooling
 - Decreased CSF volume
 - Pediatric – less relative CSF volume
- Cell volume regulatory ions
 - Na, K, Cl
 - Released within 5 min from cells
 - Can continue for 4 hours
 - Stretched cell membranes open ion channels
 - Hormone regulated cellular ion differences
 - Predisposes females to more damage

Hypotonic Hyponatremia
Brain Edema
- Reduction of cellular osmolytes
 - Polyalcohols
 - Sorbitol
 - Inositol
 - Amino acids
 - Methylamines
 - Within 2-4 days
 - Up to 50% reduction osmolytes
Hypotonic Hyponatremia
Brain Edema

- Early and late phase changes
 - Limit cellular edema
 - Limit damage
- Hypoxic ischemic encephalopathy
 - Compounds hyponatremia damage
 - Interferes with compensation
 - Cerebral edema
 - Interferes with cerebral perfusion
 - Impairs central respiratory centers

Hypotonic Hyponatremia
Chronic, severe

- Asymptomatic
 - Oligosymptomatic
 - Not treat?
 - Only for days
 - Somnolent
 - Disoriented
 - Often Rx
- Causes
 - Diuretics
 - SIADH
 - Malnourishment/liver disease
 - Diarrhea

Hypotonic Hyponatremia
Chronic, severe - treated

- Risk of cerebral myelinolysis
 - Central pontine myelinolysis
 - Initial report 12 patients – weak evidence
 - Other reports extrapontine
 - May occur in 25% cases
 - Over rapid correction
 - Other risk factors
 - Hypokalemia
 - Alcoholism in man (liver disease)
 - Experimental studies – Na 118 to 140 mEq/l
 - 48 hr – OK
 - 8 hr – 90% myelinolysis
 - Rx hypertonic saline
 - Rx ADH antagonist
Hypotonic Hyponatremia

Myelinolysis - Pathogenesis

- **Osmotic reloading fails**
 - Rapid correction
 - Brain cell Na, K
 - Normal
 - High because of overshoot
 - Amino acid content low
- **Osmotic reloading**
 - Organic osmolytes take up to 5 days
 - Normal metabolic molecules
 - Parts of cellular proteins/lipids
 - External addition not speed
 - Depends on new gene expression
 - RNA transcription – protein production
 - Slowest where lesions occur
 - Blood brain barrier has role

Hypotonic Hyponatremia

Myelinolysis - Pathogenesis

- **Blood Brain Barrier**
 - Major target of cellular dehydration
 - Vascular endothelial cell
 - Astrocyte foot processes
 - Cell shrink opens cell junctions
- **Blood Brain Barrier disrupted**
 - Not protect
 - Plasma constituents have access

Hypotonic Hyponatremia

Myelinolysis - Pathogenesis

- **Factors associated**
 - Overshoot hypernatremia
 - Increasing Na > 25 mEq/L 24-48 hr
 - Concurrent hypoxic event
 - Liver disease
 - Rate of Na rise
 - Less important than magnitude
 - Symptomatic hyponatremia
 - More important to treat
 - Than threat of myelinolysis
 - Signs days after Na correction
 - MRI lesions best seen 2 weeks after
Hypotonic Hyponatremia
Treatment
- Recognize cause
 - Don’t treat spurious, redistribution hyponatremia
 - Symptomatic – euvolemia/hypervolemia, with concentrated urine
- Hypertonic saline
- Furosemide – limit volume expansion
- Stop water intake
- Symptomatic – hypovolemia
 - Isotonic fluids
 - Mild symptomatic – dilute urine
 - Evaporative losses only

Hyponatremia/Hypernatremia
Osmotic Shifts

Hypotonic Hyponatremia
Treatment - Correction rate
- Acute – rapid
- Chronic
 - Increase Na < 0.5 mmol/L/hr
 - Stop once serum Na = 120-126
 - If seizures
 - Increase Na 1 – 1.5 mmol/L/hr for 1st 3 hr
 - Or until seizures stop
 - Give 1-2 ml/kg/hr 3% saline
 - If seizures severe up to 4-6 ml/kg/hr
 - Add furosemide
 - Stop when Na = 118 mEq/l
 - Goal 125 mEq/l
Hypotonic Hyponatremia
Estimate Effect of Infusate

For each liter given
Change in serum [Na] = \frac{(Infusate Na + Infusate K) - serum Na}{Total body water + 1}

Total body water
- early neonate = 0.75 \times body wt
- pediatric = 0.6 \times body wt
- adult = 0.5-0.6 \times body wt
- geriatric = 0.45-0.5 \times body wt

Hypotonic Hyponatremia
Treatment

- Vasopressin Antagonists
 - Better predictability
 - Better fine tuning
- Hyponatremia and ADH
 - Primarily disease of excess ADH
 - In face of continued hypotonic fluid intake
- Not use with hyponatremia because of
 - Renal disease
 - Volume contraction
- Oral products being tested

Hypotonic Hyponatremia
Vasopressin Antagonists

- Demeclocycline
 - Blocks at tubules
- Aquaretics
 - \text{V}_{1a} \text{ & } \text{V}_{2}
 - Conivaptan
 - \text{V}_{2}
 - Lixivaptan
 - Satavaptan
 - Tolvaptan
Hypernatremia

- Uncommon
- Deficit of water relative to Na stores
 - Water loss > Na loss
 - GI – osmotic diarrhea
 - Inosensible loss
 - Renal loss
 - Hyperglycemic hyperosmolar syndrome
 - Diabetes insipidus
 - Nephrogenic/Central
 - Medullary “washout”
 - Tubular concentration abnormality

- Lack of water intake ***
 - Must be present for hypernatremia

- Combined
 - Free water losses
 - Renal Na conservation
 - Limited water intake

- Excess Na relative to water
 - Na intake > water
 - Sodium toxicity
 - Lack of water intake must also be present
Hypernatremia

- Clinical differentiation
 - Na toxicity
 - Low urine volume
 - High USg
 - High FxNa
 - Free water loss – not renal
 - Low urine volume
 - High USg
 - Low FxNa
 - Free water loss – renal
 - High urine volume
 - Low USg
 - Low FxNa

- Hypertonic hyperosmolality - always
- Causes of hypernatremia
 - Spurious
 - Excessive free water loss
 - Pure water loss
 - Hypotonic fluid loss
 - Hyperosmotic intake
 - Iatrogenic

Spurious hypernatremia

- Sampling errors
 - Blood samples from the intravenous catheter
 - Not large enough presample
 - Sample contamination
 - with saline
Hypernatremia
Increased free water loss

- Increased insensible loss
- Increased respiratory rate
- Low humidity
- High body temperature
- External warming
 - Radiant heat
 - Hot air heat
- Increased insensible loss with limited intake
 - Hot weather
 - Neonate unable to nurse
 - Lack opportunity
 - NE

Hypernatremia
Increased free water loss

- Water loss
 - Diabetes insipidus
 - Unusual because of neonate's diet
 - $U_{osm} < R_{osm}$
- Water $>$ Na loss
 - Osmotic diuresis
 - Hyperglycemic hyperosmolar syndrome
 - Need interruption nursing/water access
 - Milk replacer with no water access
 - Glucosuria
 - Mannitol
 - Furosemide
 - Renal disease
 - Diarrhea
 - Excessive sweating

Hypernatremia
Hyperosmotic Intake

- High sodium maternal milk
- Excessive sodium intake relative to free water
- Iatrogenic mishaps
 - Improperly mixed electrolyte solutions
 - Without the opportunity/ability to drink fresh water
 - Improperly mixed milk replacer
 - All powdered milk replacers are sodium rich
 - Use of hypernatremic intravenous fluids solutions
 - 5% sodium bicarbonate
 - Hypertonic saline
 - Use of saline in oxygen humidifiers
 - Hypertonic enemas (retained)
Hypernatremia
Normal defense against

- Concentrate urine
- Osmolar release ADH
- Thirst
 - Only develops if can’t get to water
 - Lack of available water – not nursing
 - Hypernatremia uncommon in neonates

Hypernatremia
Treatment

- Recognize cause
 - Eliminate/manage underlying problem
- If developed acutely (hours)
 - Can be corrected over hours (↓Na 1 mmol/hr)
 - Usually acute sodium loading
- If developed slowly (over days)
 - Intracellular accumulation organic osmolytes
 - Correct slowly to avoid cerebral cellular edema
 - ↓Na < 0.5 mmol/hr (target ↓Na 10 mmol/day)

Hypernatremia
Treatment

- If Na > 170
 - Don’t decrease < 150 for 48-72 hr
- Oral fluid therapy
 - As soon as possible
 - Na and K in milk
- Seizures during treatment
 - Common
 - From cerebral edema
 - Slow correction
Hypernatremia
Estimate Effect of Infusate

For each liter given
Change in serum [Na] = \frac{(\text{Infusate Na} + \text{Infusate K}) - \text{serum Na}}{\text{Total body water} + 1}

Total body water:
- early neonate = 0.75 X body wt
- pediatric = 0.6 X body wt
- adult = 0.5-0.6 X body wt
- geriatric = 0.45-0.5 X body wt

Hypokalemia

- Hypokalemia common in neonates
- Anabolic increase in cell mass (growth)
 - Potassium major intracellular ion
- Renal K wasting
 - Diuresis
 - Renal pathology
Hypokalemia
Stress/sepsis

- Resting muscle
 - Uses 10% of available Na⁺:K⁺ ATPase activity
- Stimulated acutely by
 - Insulin
 - Epinephrine
 - Contractile activity

Hypokalemia
Stress/sepsis

- Stress/Sepsis →↑ epinephrine
 - ↑ Na⁺:K⁺ ATPase activity
 - Significant intracellular shifts of K → hypokalemia
 - ↑ ATPase demand
 - ↑ glucose utilization/requirement
 - ↑ glucose transport into the cell resulting
 - → further shift K intracellular??

Hypokalemia
Pathogenesis

- Loss of 1% total body potassium
- Disturbs transcellular distribution
- Results in physiological changes
- Blood levels
 - Not correlate total body stores
 - Rapid drop more likely clinical signs
- Loss 100 mEq K
 - Blood level decreases by 0.3 mEq/l
 - If there are no confounders
Hypokalemia
Signs - man

- Muscle weakness
- Paralytic ileus
- Cardiac arrhythmias
 - Atrial tachycardia
 - Atrioventricular dissociation
 - Ventricular tachycardia/fibrillation
 - Flat or inverted T-waves
 - ST-segment depression
 - U-waves

- K < 2.5
 - Rhabdomyolysis with myoglobinuria
 - Acute renal failure
- K < 2.0
 - Ascending paralysis
 - Impairment of respiratory function
 - Not recognize in neonatal foals

Hypokalemia
Signs - man

- High levels of potassium in milk
 - Will support growth requirements
- Stressed/Septic neonates
 - Not tolerate oral feeding
- Neonates require significant K supplementation
 - Prolonged intravenous glucose
 - Parenteral nutrition
 - Limited or no milk feeding
- Glucocorticoid administration
 - Mineralocorticoid receptor stimulation
 - ↑ urine loss of potassium
Hypokalemia

Treatment

- Neonates
 - Milk diet – not need supplement
- Fluids only
 - If normal plasma levels – 3 mEq/kg/d
 - If hypokalemic – 6-12 mEq/kg/d or more

Hyperkalemia

- Differential diagnosis
 - Ruptured bladder
 - Urinary tract defect
 - Sick cell syndrome
 - Iatrogenic

- Loss of integrity lower urinary tract
 - ↑K only when on a milk diet
 - Also true for ↓Na, ↓Cl
 - Receiving parenteral nutrition
 - ↑K only occur with overzealous K administration
- Sick cell syndrome
 - Suffer global cell insult
 - Perinatal hypoxic ischemic asphyxial insults
 - ↑K – 6-8 mEq/l
- Hyperglycemia – no insulin response
- Iatrogenic in the face of renal insufficiency
Hyperkalemia

Signs

- Impaired neuromuscular transmission
 - Cardiac
 - Neuromuscular paresis/paralysis
- General fatigue
- Weakness
- Paresthesia

Management of Hyperkalemia

Questions to be asked:
- Is there an emergency related to hyperkalemia?
 - If so, what is the plan for therapy?
- Is pseudohyperkalemia present?
- Did this hyperkalemia develop acutely?
 - Toxicity more related to rate of increase than level
 - Toxicity associated with acid-base status
- What role of:
 - High K intake
 - Decreased renal K excretion
 - Transcellular K shift

Management of Hyperkalemia

- ECG changes
 - Peaked T wave
 - False = depending on lead placement
 - Decrease/absence P waves
 - False = depending on lead placement
 - Prolonged PR interval
 - Widened QRS
 - Sine wave QRS
 - Asystole
- ECG not sensitive indicator of hyperkalemia
 - K > 6.0 – 46% abnormal ECG (in man)
 - K > 6.8 – 55% abnormal ECG (in man)
- Not predicable progression
Management of Hyperkalemia

- Pseudohyperkalemia
 - Sample hemolysis
 - Long, tight tourniquet (man)
 - Leukocytosis (>70,000; serum)
 - Thrombocytosis (>1,000,000; serum)
 - Measure plasma vs serum
 - If serum > 0.3 higher - pseudohyperkalemia

Management of Hyperkalemia

Urgent Therapy

- Oppose direct toxic effects
 - Ca therapy
- Promote cellular uptake K
 - Insulin (glucose)
 - β₂-agonists (albuterol)
 - NaHCO₃ - not
- Remove from body
 - Drain uroabdomen
 - Diuretics
 - Cation exchange resins

Management of Hyperkalemia

Urgent Therapy

- Calcium
 - Ca gluconate – less irritating
 - CaCl – Ca more biologically available
 - Slow IV push
 - ECG changes within 1-3 minutes
 - Lasts 30-60 minutes
Management of Hyperkalemia
Urgent Therapy

- Insulin
 - Increase Na/K pump – primarily muscle/liver
 - Increase Na/H exchanger as well – may be important
 - Onset 20 min with peak 30-60 min
 - Dose related
 - Use glucose only to prevent hypoglycemia
 - Dose – 10 units as a bolus
 - Lasts 4-6 hr
 - CRI use in neonates
 - Hypoglycemia risk – monitor

- Adrenergic Agents
 - β₂-receptor in the muscle and liver
 - Directly activate Na/K-ATPase
 - Increase cAMP
 - Albuterol
 - By insufflation or IV
 - K drop within 30 min, peak 90-120 min
 - Drop 0.6-1 mEq/l
 - Has no effect 40% dialysis patients (man)
 - Effect additive to insulin

- NaHCO₃
 - Poor response
 - Requires 4 hrs for effect
 - K decreased < 0.35 mEq/l at 6 hr

- Combined therapy
 - Insulin + β₂
 - Different mechanisms
 - In theory additive 60-100%
 - But not all respond to β₂
 - Combination – less frequent hypoglycemia
 - Insulin + NaHCO₃
 - Potentiate effect?
Management of Hyperkalemia
Direct Elimination from Body

- Gastrointestinal Route
 - Sodium polystyrene sulfonate
 - Cation exchange resin
 - 1 gm removes 0.5-1 mEq/l K
 - 4-6 hr required for full effect
- Oral, enema
 - Constipates – give with laxative
 - Minimal short term effect
 - Depends on gut perfusion

Management of Hyperkalemia
Direct Elimination from Body

- Renal
 - Na diuresis
 - Deliver Na to distal K secreting sites
 - Renal disease often attenuates effect
- Abdomen
 - Draining uroabdomen
 - Peritoneal dialysis