Foal: Wishful Warm Blood filly DOB: March 25 1 AM Admission Date: March 25 11:25 AM ■ 10 hours old

Wishful History

Born at 1 AM on March 25 **Foal began to breathe with nostril flaring** • As soon as the nostrils cleared the canal Stage II 10 minutes Foal was pulled Stage III Placenta came with the foal Placental horn retained Foal "appeared slow" From the beginning...but normal Able to stand with help Not searching the mare Became weaker Developed periods of somnolence

Wishful Admission

Recumbent on arrival

 Transported to the NICU

 Rapid assessment of essential organ function

 Severe sepsis
 Poor pulse quality
 Cold legs and ice cold hooves
 Temperature 99.6

- Dropped during initial hospitalization 97
- HR 104 bpm
- RR 18 bpm
- BP 73/30(37)

Wishful Admission

Rapid, directed interventions Treatment of shock $\square INO_2$ Crystalloid boluses Responded after 3 X 1 liter boluses **BP** after fluids 90/58(65) ■ *PE* – good perfusion

Wishful Admission

- Further examination after initial resuscitation
 - Bilateral entropion
 - Extreme scleral injection
 - Oral drying injuries
 - *Icterus*
 - Pseudopetechia
 - Moderate coronitis
 - Normal body condition
 - Neonatal skin wrinkling
 - Normally responsive
 - Searches, inducible suckle
 - Can stand with support with good balance
 - Somnolent periods

Wishful Initial Laboratory Analysis

 $\square PCV = 50$ **TP** = 7.4Fibrinogen = 370 mg/dl VWBC = 7000■ *Segs* = 5110 Bands = 210 Lymphs = 1680

Wishful **Initial Laboratory Analysis** Venous Dextrose = 20 mg/dl $\blacksquare BUN = 24 mg/dl$ Total Ca = 16.38 mg/ml • Ca++ = 6.84 mg/dlMg++=2.79 mg/dl $\square IgG = 776 mg/dI$ Total Bili = 4.5 mg/dl

Wishful Initial Laboratory Analysis

Value	Adm	1 hour
рН	7.251	7.305
Pco2	47.3	50.2
Po2	64.0	285
HCO3	20.9	25.1
BE	- 5.8	-0.9
SAT	94.5	100
Cont	17.9	15.9
Lactate	14.9	10.0
	RA	10 lpm

Wishful Initial Laboratory Analysis

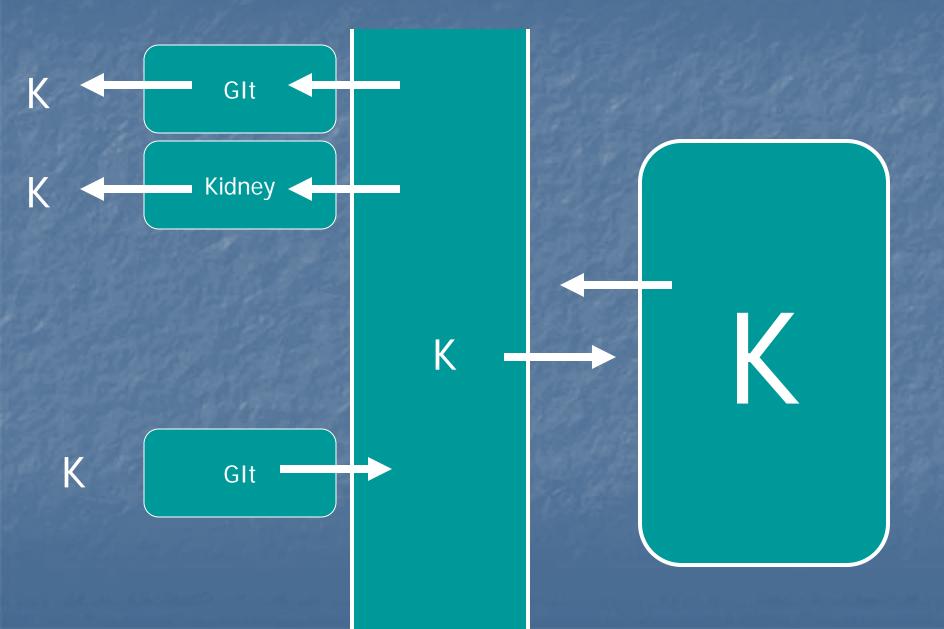
Value	Adm
Na	115
К	7.33
CI	72
Cr	28
AST	657
СРК	3012

Wishful

- Major finding
 - Hyponatremia
 - Hypochloremia
 - Hyperkalemia
- Magnitude of changes
 - May require urgent intervention
 - Vital to understand the origin of the abnormalities
 - Direct rational therapy
 - Wrong choices severe consequences
 - Many clinicians assume ruptured bladder
 - Easily rule out
 - Age
 - Lack of fluid intake

Hyponatremia

- Spurious Hyponatremia
- Dilutional Hyponatremia
 - Ruptured bladder
 - Fenestrated ureters
 - Renal failure
 - Delayed renal transition from fetal to neonatal physiology
 - Water overload
- Depletional Hyponatremia
 - Diarrhea
 - Sodium wasting nephropathy
 - Diuretics
- Redistribution Hyponatremia
 - Other osmoles in the blood
 - Hyperglycemia
 - Iatrogenic addition of osmoles (e.g. mannitol)
 - Sick Cell Syndrome


Wishful Hyponatremia

	Spurious hyponatremia
1	Dilutional hyponatremia
	No intake since birth
	Depletional hyponatremia
	Not begun to urinate
	Has not past meconium yet
	Redistribution hyponatremia
	Water diluting Na come from cells
	Some osmolyte other than sodium
	Drawing water from cells
	Source of osmoles?
	Hypoglycemic
	Not received exogenous substances
	Presence of endogenous osmolytes
	Leaked from cells

Wishful Hyponatremia

Significant therapeutic implications Not sodium deficiency Not water overloaded Not hyposmotic May be hyperosmotic Don't give sodium (hypertonic) Don't induce an unsupported diuresis

K Kinetics

Hyperkalemia

Mechanisms High intake Dietary Parenteral Blocked excretion Must have continued intake Leak from cell Wishful No intake Must be cell leak

Sick Cell Syndrome

Global loss of integrity of cell membranes

- Acute, severe widespread insult
 - Hypoxic ischemic?
 - Inflammatory?
 - Globally affect cells
 - Loss of cell wall integrity
 - Transient or permanent
 - Allowing solutes to leak
 - Drawing fluid with them
 - Dilution of extracellular sodium
- Redistribution hyponatremia
 - Osmolar Gap (OG)
 - Unmeasured osmolytes
 - $OG = Osm_m Osm_c$
 - $Osm_m = (2X [Na]) + (glucose/18) + (BUN/2.8)$

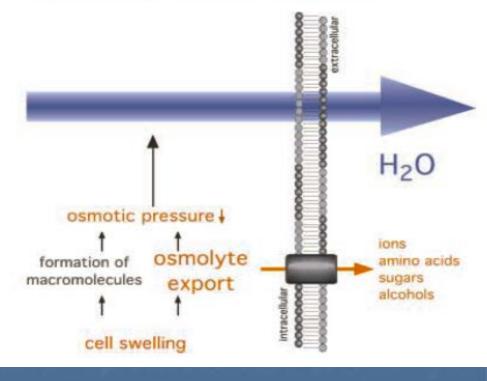
Sick Cell Syndrome

OG > 10 mOsm Osmoles other than Na or glucose Associated with MODS High fatality rate What are the osmoles? Organic phosphate Pyruvate Lactate Amino acids Unidentified middle molecular weight substances

Wishful Initial Laboratory Analysis

Value	Adm
Na	115
К	7.33
CI	72
Cr	28
AST	657
СРК	3012
Osm _m	312
Osm _c	240
Osm Gap	72

Regulatory Volume Decrease


Another explanation Regulatory Volume Decrease (RVD) Fluid overloaded cells All mammalian cells Protective mechanism Limits cell swelling Reasons cells swell Hyponatremia Hyposmotic interstitium Initial stages of hypoxic ischemic insults Hyperosmotic cell interior

Regulatory Volume Decrease Mechanism

Voltage-independent, volume-sensitive channels

- Activated by cell swelling
- Allow outflow of
 - K+
 - CI-
 - Amino acids
 - Other organic molecules
- Water follows
 - Restoring cell volume

REGULATORY VOLUME DECREASE

Redistribution Hyponatremia Neonatal Foals

Both SCS and RVD are involved Mild insults Compromise cellular function Allow fluid to leak RVD - protective mechanism More severe damage Initially result in RVD Evolve into SCS

Sick Cell Syndrome

Other cell constituents also leak K+ leak Both RVD and SCS High intracellular levels of K Mild increase in efflux globally Increase plasma K levels significantly AST Outcome About 60% of SCS cases do not survive Identification of SCS - guarded to poor prognosis

Sick Cell Syndrome Therapy

Don't treat hyponatremia
 Not sodium deficit
 Osmolarity high normal
 Not water overload

Sick Cell Syndrome Therapy

Hyperkalemia If ECG changes ■ Mg (MgSO₄) Enhance cell entry Insulin B₂ adrenergic Albuterol Na HCO₃ – not recommended Enhance excretion Osmotic diuresis **Furosemide** GI cation exchange resin Is treatment necessary??

Wishful Outcome

Value	Adm	24 hr	48 hr
Na	115	126	132
К	7.33	4.26	4.76
CI	72	87	96
Cr	28	9.24	1.74
AST	657	781	534
СРК	3012	625	74
Osm _m	312	312	295
Osm _c	240	270	275
Osm Gap	72	43	20

Wishful Outcome

Intrauterine Insult – catabolsim, SIRS Sepsis High fibrinogen, left shift Inject, icterus Shock, increased lactate, acidosis Admission blood culture Flavobacerium Neonatal Encephalopathy Inconsistent nursing behavior HD 6 - nursing from mare

