Neonatal Renal Physiology and Pathophysiology
Fetal-Neonatal Transition

- Fetal kidneys - 3% CO
 - High renal vascular resistance
 - Low GFR
- Newborn about 15% (lambs)
 - At moment of birth immediate increase renal blood flow
 - 86% decrease renal vascular resistance (piglets)
 - Redistribution from the inner cortex to outer superficial cortex
- Weeks after birth
 - Rise in arterial blood pressure
 - Less important
 - Further decrease in vascular resistance
- Both anatomic and vasoactive effect
Fetal-Neonatal Transition

- Blood flow to all regions increases
 - Cortical, medullary, papillary
- Distribution differs – neonate vs adult
 - Greater % to the inner cortex and medullary
 - Greater perfusion of juxtaglomerular nephrons
 - As total renal blood flow reaches adult levels
 - Greater fraction - outer cortical nephrons
- Transition time to adult pattern varies with species
 - Man 3 months
Fetal-Neonatal Transition
Renal Hemodynamics

- Angiotensin II
- Renal Sympathetic Nervous System
 - Renal sympathetic nerves
 - Intrinsic adrenergic release
 - Circulating adrenergics
- PG
- NO
- Kallikrein-Kinin System
- ANF (atrial natriuretic factor)
- Endothelin
Fetal-Neonatal Transition
Renal Hemodynamics

- Angiotensin II
 - Growth factor
 - Required for normal nephrogenesis
 - Important in
 - Tubuloglomerular Feedback
 - Autoregulation
 - Decreased
 - Maternal dietary protein restriction
 - Decreased renal mass
 - In man - adult hypertension
Fetal-Neonatal Transition
Renal Hemodynamics

- Renal Sympathetic Nervous System
 - Circulating adrenergics
 - Sympathetic tone
 - Decrease renal blood flow
 - Neonates more sensitive than adults
 - Sympathetic control of renal blood flow
 - Part of baroreceptor reflex
 - Changes with baroreceptor reflex adaptation
Fetal-Neonatal Transition
Renal Hemodynamics

- **NO**
 - Important in vasodilation and other functions

- **Prostaglandins**
 - **COX 1** - renal vascular, glomeruli, collecting duct
 - **COX 2** - distribution species dependent
 - Activity increases after birth
 - Peaks 1-2 wk then declines
 - Important in nephrogenesis

- **Vasodilate**
 - Renal PG production increases perinatal period
 - Pathologic conditions - attenuate renal vasoconstriction
 - Important in renal blood flow in basal and stress conditions
Fetal-Neonatal Transition
Renal Hemodynamics

- **PG**
 - Intrinsic PGs are involved
 - NSAIDs in fetus, neonate
 - Decrease urine output
 - Significant decrease blood flow
 - Increase in renal vascular resistance
 - Fetus - oligohydramnios
- **Vasodilatory**
 - Counteract vasoconstricted state
Fetal-Neonatal Transition
Renal Hemodynamics

- Vasoconstrictors and vasodilators
 - Balance produces renal vascular resistance
 - Differ from adults
 - Different effects
 - Different intrarenal levels
 - Different sites of action
- Balance major determinate of GFR
Renal Hemodynamics
Summary

- Increased renal vascular resistance
 - Increased activity of Angiotensin II
 - Increased sensitivity to catecholamines
- Critical vasodilators counterbalance
 - NO
 - PG
- Increase in renal blood flow
 - Decrease vasoconstrictors
Fetal-Neonatal Transition

GFR

- Oppose/promote filtration
 - Changes in renal vascular resistance
 - Increasing nephron mass
 - Modification ultrafiltration
 - Glomerular membrane dynamics
 - Glomerular membrane area
 - Development of concentration gradients

- Lamb
 - GFR increases within hours of birth
 - Gradual increase GFR in the first week
 - Functional and not morphological change
 - Enhanced glomerular perfusion
 - Recruit more superficial cortical nephrons
Fetal-Neonatal Transition

GFR

- Rate of filtration
 - Starling factors
 - Rate of flow of plasma into glomerular capillaries
 - Permeability capillary wall
 - Total surface area of capillaries

- GFR dependent on
 - Renal blood flow
 - Glomerular capillary pressure

- Hydrostatic pressure favors filtration
- Transcapillary hydrostatic pressure
 - Efferent/afferent capillary resistance
<table>
<thead>
<tr>
<th>Mediator</th>
<th>Afferent arteriole</th>
<th>Efferent arteriole</th>
<th>RBF</th>
<th>GFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiotensin II</td>
<td>↑↑ Vasoconstrict</td>
<td>↑↑ Vasoconstrict</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>Prostaglandins</td>
<td>↑↑↑ Vasodilate</td>
<td>Vasodilate</td>
<td>?</td>
<td>↑↑ With ↓ BP</td>
</tr>
<tr>
<td>ANP</td>
<td>↑ Vasodilate</td>
<td>↑ Vasoconstrict</td>
<td>No change</td>
<td>↑↑</td>
</tr>
<tr>
<td>NO</td>
<td>↑↑ Vasodilation</td>
<td>↑↑ Vasodilation</td>
<td>↑↑</td>
<td>↑↑</td>
</tr>
<tr>
<td>Endothelin</td>
<td>↑↑ Vasoconstrict</td>
<td>↑↑ Vasoconstrict</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Endothelin</td>
<td>↑ Vasodilate</td>
<td>↑ Vasodilate</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Norepi/epi</td>
<td>↑↑↑ Vasoconstrict</td>
<td>↑↑↑ Vasoconstrict</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Sympath stimulation</td>
<td>↑↑↑ Vasoconstrict</td>
<td>↑↑↑ Vasoconstrict</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>
Fetal-Neonatal Transition
Tubular Function

- Sodium
 - Fetal FxNa 5-15%
 - Lack of efficient tubular reabsorption
 - More distal tubules than proximate tubules
 - Bulk Na absorbed proximal
 - Carrier density
 - Cellular polarization
 - Birth (sheep, man) – just before birth foal??
 - Sodium/hydrogen exchanger distal tubule
 - Sheep - increased activity 1st 24 hr after birth
 - Birth cortisol surge upregulates
 - Normal low FxNa in neonate
Fetal-Neonatal Transition
Tubular Function

- Na administration
 - Extracellular volume expansion
 - Edema
 - Hypernatremia
 - If large insensible losses
- Fractional Na absorption
 - Less in proximal tubule in neonate
 - More distal tubule
 - Overall lower FxNa
- Enhanced ability to reabsorb Na in the distal tubule
- Blunted Na excretion in the face of a Na load
- Increase transport
 - Maturation of the Na-K-ATPase
 - Increases density
Fetal-Neonatal Transition
Tubular Function

- **Glucose**
 - Higher renal threshold in fetus than adult

- **Phosphate**
 - Fetal level high
 - Placental transport against concentration gradient
 - Na-phosphorus cotransporter
 - Unique - growing animals
 - Not modulated by dietary phosphorus intake
 - High rate renal PO4 reabsorption in fetus/neonate
 - Fetal kidney responds to parathyroid hormone
 - Increased urinary excretion of Ca (opposite of adult)
 - Blunted effect on urinary PO4 excretion during fetal life
 - Hyperphosphatemia - relative parathyroid insufficiency
 - Compounded by an already low fetal renal clearance of phosphorus
Fetal-Neonatal Transition
Cortisol and Stress

- **Fetal stress**
 - Accelerate renal transition

- **Cortisol**
 - Increase GFR
 - Decrease PO$_4$ reabsorption by 50%
 - Na reabsorption
 - Decreases proximal
 - Increases distal
 - No change Fxna
 - Accelerate development tubular reabsorption capacity
 - Na
 - K
 - H$_2$O
 - Distal Na carrier mediated absorption
Autoregulation

- Range of autoregulation set to lower perfusion pressure
 - MAP 40-60
 - Renal pressure-flow relationship changes with renal maturation
- Mediated by PG dependent rennin release
 - Causing vasoconstriction at lower levels of perfusion pressure
 - NSAID therapy may disrupt
Tubuloglomerular Feedback

- Tubuloglomerular feedback
 - Macula densa cells
 - ↓ NaCl delivery distal tubules
 - Stimulate angiotensin II form juxtaglomerular cells
 - Constrict efferent arterioles
 - Stimulates PG
 - Vasodilates afferent arterioles
 - Increase GFR
 - Matures with growth
 - Maximally sensitive at normal tubular flow range
 - As GFR increases, maximum response and flow range also increases
 - Relative sensitivity unaltered during growth
Measuring Renal Function

- **Cr levels**
 - Rate of drop

- **Clcr**
 - Measure Cr in plasma and urine, urine volume
 - Inulin Clearance (PAH)
 - Plasma Disappearance Curve method
 - Multiple values over 4-5 hours
 - Confounders
 - Distribution phase
 - Edema
 - GI loss

- **FxNa**
 - Normal < 0.3%

- **U/A**
Measuring Renal Function
Urinalysis

- Urine specific gravity
 - Refractive index
- Urine pH
 - Systemic acid base
- Blood
 - Without protein
- Protein
 - After colostrum
- Glucose
 - Not spilling with high blood values
- Ketones
 - Ceftiofur
- Bili
- Sediment
Pathogenesis
Abnormal GFR

- **Vasomotor nephropathy**
 - Decrease renal blood flow
 - Hypovolemia
 - Release vasoconstrictors
 - Angiotensin II, vasopressin, catecholamines
 - Sepsis
 - Inflammatory mediators
 - Hypovolemia
 - Release of vasoactive mediators
 - Hypoxia/asphyxia
 - Overactivation of the rennin-angiotensin system, intrarenal adenosine, vasopressin, catecholamines

- **Prerenal**
 - Hypotension, hypovolemia, hypoxemia, asphyxia
 - Extrarenal and intrarenal – difficult to separate
Pathogenesis
Abnormal GFR

- Other causes - NSAIDs
 - High PG levels
 - Needed to maintain perfusion neonatal kidney
 - Hypotension/hypovolemia
 - High PG levels
- NSAIDs
 - Reduce GFR
 - Reduce renal blood flow
 - Effect transient
 - Nonselective and COX-2 selective inhibitors
 - Same effect
 - Also may affect
 - Autoregulation
 - Tubuloglomerular feedback
Clinical Acute Renal Failure

- Azotemia - acute decrease in GFR
- Classic classification
 - Prerenal – disorder of systemic circulation
 - Intrinsic Renal Failure
 - ATN – clinical syndrome
 - Vascular
 - Glomerular
 - Interstitial
 - Postrenal
Clinical Acute Renal Failure

- Decrease GFR
 - Loss of number of filtering nephrons units
 - Trauma
 - Renal vessel thrombosis
 - Decrease in rate of filtration in individual nephrons
- Ischemia and nephrotoxic injury
 - Deeper nephrons are at more risk
 - Outer medulla nephron segments
Clinical Acute Renal Failure

- Loss of GFR– reduced SNGFR
 - Rate of glomerular plasma flow
 - Prerenal or intrinsic renal blood flow
 - Glomerular transcapillary hydraulic pressure
 - Plasma colloid osmotic pressure
 - Permeability properties glomerular capillary
Acute Renal Failure
Autoregulation

- Control afferent and efferent vascular tone
 - Consistent GFR
 - Decrease renal perfusion
 - Afferent dilation
 - Efferent constriction – angiotensin II
- Autoregulation impaired in Acute Renal Failure
 - Decreasing renal blood flow
 - Decrease GFR
 - Cause additional renal ischemia
- Neonates
 - Autoregulate with low BP
 - Low set point
 - But with volume depletion
 - Higher renal vascular resistance
 - Lower GFR
 - Potentially more injury
Acute Renal Failure

- Tubular epithelial cell function
 - Defined apical and basolateral membranes
 - Integrins - tubular epithelial cell adhesion
 - ATP depletion
 - Integrins relocate to apical membrane
 - Change actin cytoskeleton
 - Cellular rounding and detachment from basement membrane
Acute Renal Failure

- Tubular epithelial cell function
 - Loss cell tubular lumen
 - Obstruction - cell adhere in clumps
 - Back pressure decrease GFR
 - Cells in lumen may be viable

- Reorientation of Na-K ATPase
 - From basolateral position
 - Reverses Na absorption
 - Na wasting
 - Na in distal tubule stimulate vasoactive decrease renal blood flow
 - Tubuloglomerular feedback mechanism
ARF

- Tubular injury
 - Interrupts structural integrity
 - Loss of tight junctions
 - Desmosomes
 - Gap junctions
 - Backleak of Cr
- High plasma CR
 - How much is decrease GFR
 - How much is back leak
Causes Acute Renal Failure

- Prerenal
- Renal artery or vein thrombosis
- Intrinsic vasogenic renal failure
 - Neonatal Vasomotor Nephropathy
- Acute Tubular Necrosis
- Interstitial nephritis
- Pyelonephritis
- Nephrotoxicity
 - Aminoglycoside
 - NSAIDs
 - Vasogenic
 - Interstitial
Renal/Prerenal Concept

- Prerenal completely benign?
- Renal always mean damage?
- Is separating the 2 useful?
- Oliguria
 - Appropriate with hypovolemia
 - More profound – tubular function intact
 - Low flow help concentration mechanisms
 - Tubules injured
 - Concentration impaired
 - More normal amt of urine
- High UsG and low UNa
 - Normal tubular function
 - Not necessary normal renal function
ATN Concept

- Clinical syndrome
 - Usually not tubular necrosis – rare

- True tubular necrosis - experimental
 - Ischemia > 1 hr then reperfusion
 - Necrosis of outer medulla/proximal convoluted tubules
 - Distal nephron usually OK
ATN Concept

- Clinical ATN
 - Not morphologic change – most cases
 - Clinical situation – hypoperfusion/hypoxia/ischemia
 - Adequate renal perfusion to maintain tubular integrity
 - Not sustain GFR
 - Minimal parenchymal compromise
 - Severe organ dysfunction
 - Loss cellular polarity
 - Loss of cells to lumen
ATN Concept

- Clinical ATN
 - Clinical ATN – not hypoperfusion/hypoxia/ischemia
 - Sepsis/SIRS
 - Endothelial dysfunction
 - Coagulation abnormalities
 - Toxicity
 - Aminoglycoside
 - NSAIDs
RIFLE

- Clinical definition – like SIRS
 - Consensus definition
 - Distinguish between the severity/degree dysfunction

- RIFLE
 - R - risk
 - I - injury
 - F - failure
 - L - loss of renal function
 - E - end stage kidney disease

- Acute Renal Injury
 - Spectrum - risk to injury to failure
 - Not ATN or ARF - dysfunction not failure
 - Evidence of dysfunction including both and more
 - Leads to fluid, electrolyte and acid-base problems
Risk
- Increased creatinine ×1.5 (or increase creatine of ≥0.3 mg/dl)

Injury
- Increased creatinine ×2

Failure
- Increase creatinine ×3 or creatinine ≥4 mg/dl (acute rise of ≥0.5 mg/dl)

Urine output criteria
- UO < 0.5 ml/kg/h ×6 h
- UO < 0.5 ml/kg/h ×12 h
- UO < 0.3 ml/kg/h ×24 h or Anuria ×12 h

Loss
- Persistent AKI = Complete loss of renal function >4 weeks

ESKD
- End-stage kidney disease
Neonatal Vasomotor Nephropathy
Neonatal Vasomotor Nephropathy

- GFR and RBF
 - Balance afferent/efferent tone
 - Vasoconstrictors
 - Angiotensin II
 - Adrenergics
 - Circulating – epi/norepi
 - Renal derived
 - Renal sympathetic tone
 - Vasodilators
 - PG
 - NO
Neonatal Vasomotor Nephropathy

- **Risk**
 - Hypovolemia/hypoperfusion
 - Stress
 - Hypertension
 - Autonomic dysfunction
 - Pressor therapy
 - NSAID therapy
 - Failure birth transition

- **Signs**
 - Oliguria
 - Concentrated urine
 - Normal/high/low Fxna
 - Slow Cr decrease or increase
Neonatal Vasomotor Nephropathy

- **Therapy**
 - Volume trial
 - Inotrope/pressor trial
 - Dopamine?
 - Furosemide trial
 - Increase PG – vasodilate
 - 1-4 mg/kg trial doses
 - Time

- **Consequences**
 - Usually no parenchymal damage
 - Can occur rare cases
 - Increase/failure to decrease Cr
 - Sodium waisting
 - Fluid/water overload
 - Na overload
 - Impaired acid/base correction?
Renal Tubular Acidosis

- Group of renal tubular disorders
 - Hyperchloremic acidosis
 - Non-anion gap acidosis
 - No decrease in GFR
- Genetic and acquired defects
 - H⁺ and HCO₃⁻ transporters
 - Cl⁻ and Na transporters
Types of RTA

- Distal RTA
 - Failure to secrete acid
 - Type 1
 - Classic

- Proximal RTA
 - Failure to reabsorb HCO_3^-
 - Type 2

- Heterogeneous RTA
 - Type 3
 - Not real

- Hyperkalemic distal RTA
 - Type 4
 - Aldosterone problem??
Proximal RTA

- Impaired recovery of bicarbonate
- Fanconi’s syndrome - defective reabsorption
 - Glucose
 - Amino acids
 - Electrolytes – PO₄, K
 - Organic acids
- Urine pH < 5.5
 - Systemic acidosis – HCO₃ < 15
 - Little HCO₃ filtered – most absorbed
- Bicarbonaturia
 - Fe > 15%
 - On bicarbonate replacement - plasma HCO₃ > 22
- Acidosis
 - Failure to absorb HCO₃
 - Failure to secrete Cl
Distal RTA

- Inability to acidify the urine distal tubules
 - NH_4^+ not excreted < acid production
- Urine pH > 5.5
 - Despite metabolic acidosis
- Low urine PCO2
 - After bicarbonate loading
 - Lack distal H$^+$secretion
- In man
 - Hypercalciuria.
 - Nephrocalcinosis
 - Nephrolithiasis
Type 3 and 4 RTA

- Type 3 renal tubular acidosis
 - Carbonic anhydrase dysfunction?
 - Mixed RTA
 - Impaired proximal HCO₃⁻ reabsorption
 - Impaired distal acidification
 - Most authors – not really distinct type

- Hyperkalaemic RTA (type 4)
 - Heterogeneous group
 - Failure to excrete acid
 - Hyperkalaemia
 - Associated with
 - Aldosterone deficiency
 - Defective aldosterone signaling
RTA

- **Primary**
 - Persistent
 - Genetic defects in transporters
 - Transient

- **Secondary**
 - Number of other diseases
 - Drugs or toxins
 - Genetic defects of carrier systems
 - Fanconi’s syndrome
 - Structural disruptions of renal tubules
 - Trauma
 - Other primary renal diseases
RTA

- Drugs
 - Amphotericin B
 - Distal RTA
 - Trimethoprim potentiated sulfa drugs
 - Type 4
 - Tetracyclines
 - Proximal RTA
 - Outdated or degraded tetracycline products
 - Aminoglycosides
 - Carbonic anhydrase inhibitors
 - NSAIDs
RTA - TMS

- Developed RTA within 6 days of treatment
 - Variability onset and recovery
- Reversibility in most instances
 - Recovering within 3–4 days of discontinuation
Tetracycline - RTA

- Outdated or degraded tetracycline
 - Exposure to high temperatures/humidity
- Both tetracyclines and degradation products
 - Accumulate within mitochondria
 - Inhibit oxidative phosphorylation
- Proximal tubular dysfunction (type 2)
 - Alone
 - More commonly Fanconi ‘s syndrome
- Reversible after withdrawal
RTA
Clinical Signs

- Lethargy
- Failure to thrive
- Growth retardation
- Generalized weakness
 - Ataxia
- GI
 - Anorexia
 - Colic
 - Constipation
- Tachycardia, tachypnea
- Polyuria and polydipsia
- Signs may be quite vague
RTA Diagnosis

Hyperchloremic acidosis
- Decreased strong ion difference
- Normal anion gap

Possibilities
- GI - diarrhea
- Treatment with large volumes of saline
- RTA

Blood creatinine usually normal

Urine strong ion difference
- Urine Na + Urine K – Urine Cl
- Normal about 80
- With acidosis – expect negative value
- With RTA it will stay positive
RTA Diagnosis

- If RTA present
- Urine pH
 - Fresh urine
 - pH meter
 - Dipstick not reliable
- If not treated
 - Plasma HCO₃⁻ <15 mEq/L)
 - pH < 5.5 = Proximal RTA
 - pH > 6.0 = distal RTA
- Fx HCO₃⁻
 - Rx
 - plasma HCO₃⁻ >22 mEq/L
 - Fe HCO₃⁻ > 15% = proximal RTA
RTA - Rx

- **Symptomatic treatment**
 - Correcting the acidosis

- **Distal RTA**
 - Usually easily accomplished
 - 2-4 mEq/kg/day bicarbonate

- **Proximal RTA**
 - More refractory
 - Up to 20 mEq/kg/day of bicarbonate