Glucose
in Neonatal Foals

Jon Palmer, VMD
New Bolton Center, University of Pennsylvania
Fluid Therapy
Glucose Support

- All compromise neonates
 - Will benefit from exogenous glucose support
- Blood glucose interpretation
 - Not relate directly to adequate glucose stores
 - Hypoglycemia
 - Normoglycemia
 - Hyperglycemia
Glucose Measurement

- Bedside monitoring –
 Glucometers
- Whole blood measurement
 - Electrochemical biosensor
 - Photometric test strips
Glucose Measurement Variation

- PCV
- Total protein
- P_{O_2}
- pH
- Model/Instrument
- Reagent strip
 - Handling
 - Age
 - Lot
Glucose Measurement

PCV

Glucose Measurement
PCV and Glucose Level

Tang et al Arch Pathol Lab Med. 2000;124:1135–1140
Glucose Measurement
PCV

- Whole blood vs plasma

- Reagent strip sieve plasma
 - Increased hematocrit
 - Block the “holes”
 - Rouleau formation
Glucose Measurement
PCV

- Critically ill neonatal foals
 - Microclot formation
 - Sample hemolysis
 - Protein deposition
 - High fibrinogen levels
 - Fibrin aggregation
 - Platelet/other cellular aggregation
 - Other inflammatory phenomena
Glucose Support

- Placental glucose delivery to fetus
 - Glucose transfer rate - 4 to 8 mg/kg/min
 - Fetal foal 6.8 mg/kg/min
 - Fetal calf 5 mg/kg/min
 - Varies between species
 - Varies with energy intake on dam
Glucose Support

- Birth - glucogenesis
 - Normal fetus is born before gluconeogenesis
 - Low birth blood glucose – 50 – 60% of mare’s
 - Neonatal foal 1.4 – 2.0 mmol/L
 - Continues to drop for the first few hours of life
 - Low point of blood glucose levels
 - Is usually 2 to 4 hours after birth
Glucose Support

- Established fetal distress
 - Placentitis/lack of nutrient transfer
 - Precocious glucogenesis
- Late term/perinatal fetal distress
 - Failure of metabolic transition
 - Neonate suffering from perinatal disease
 - Normal birth blood glucose level
 - Drops to < detectable within hours
Glucose Support
Response to Exogenous Glucose

- Response patterns of compromised neonates
 - Hyperglycemia
 - Slow insulin response
 - Continued glucogenesis
 - Stress glucogenesis
 - Metabolic anarchy
 - Hypoglycemia
 - SIRS response
 - Hypermetabolism
 - Failure of metabolic transition
Glucose Support

- Give 4 – 8 mg/kg/min
 - 100 – 250 ml/hr 10% glucose
 - Don’t bolus glucose
- Most foals tolerate 8 mg/kg/min
- Foals with severe sepsis/septic shock
 - Infusion rate as high as 20 mg/kg/min
- With high exogenous glucose loads
 - Addition of thiamine to the fluids
 - may help ensure proper metabolism
Glucose Support
Glucose Intolerance

- Hyperglycemic neonate
 - Check the infusion rate
 - Is intolerance secondary to sepsis?
 - Be patient, allow time for insulin response
Glucose Support
Glucose Intolerance

- Consequences of hyperglycemia
 - Without an insulin response
 - Selective cellular dehydration
 - Glucose diuresis with subsequent fluid and electrolyte wasting
- Mild hyperglycemic (< 13.5 mmol/L)
 - No glucose diuresis
 - Give the neonate time (hours) to develop insulin response
 - Glucose diuresis, blood dextrose is persistently high without apparent adaptation
 - Initiate insulin therapy
 - Decrease glucose infusion
Glucose Support
Glucose Intolerance

- Consequences of hyperglycemia
 - Sepsis???
 - Strict glucose control
 - NICE SUGAR
Glucose Support
Renal Glucose Threshold

- Glucose threshold higher in neonate
 - Marked variation between species
- Immature kidney
 - Increased glucose reabsorption capacity
 - Low Affinity High-capacity Transport
 - Only mechanism in adult kidney some species
 - Usually less efficient in neonate
 - High Affinity Low-capacity Transport
 - Compensates for what other transport mechanisms miss
 - Higher affinity in neonates
 - Not present in adults of all species
Glucose Support
Renal Glucose Threshold

- High glucose threshold in neonate/fetus
 - Lower GFR
 - Complete reabsorption more likely
 - ↑ efficiency of high affinity low capacity transport mechanisms

- Threshold varies between individuals
 - Foals – 10 to 11 mmol/L
 - Crias – 11 to 13 mmol/L
Glucose Support
Regular Insulin therapy

- Should we use tight glucose regulation?
- Continuous infusion of regular insulin
 - Well tolerated by most neonates
 - Allows more control of glucose kinetics
- Most cases insulin deficiency
 - Not resistance
 - Respond to low insulin levels
 - Even in the face of sepsis
 - Reflect slow adaptation to regulation
 - Neonatal Metabolic Maladaptation
Glucose Support
Regular Insulin therapy

- Dose regular insulin – CRI
 - Range – 0.00125-0.2 U/kg/hr
 - Began at 0.0025 U/kg/hr
 - Double rate every 4 to 6 hr
 - until the glucose controlled
 - or the infusion rate is > 0.04 u/kg/hr

- Response to the infusion
 - Not seen immediately
 - Avoid the “glucose rollercoaster”
Glucose Support
Preparing Regular Insulin Infusion

- Use Regular Insulin
- Insulin <3 months old
- Insulin is a suspension
 - To resuspend
 - Gently rock or roll
 - Never shake

For neonates
- 0.1 U/ml solution
 - In 100-150 mls of saline
Glucose Support
Preparing Regular Insulin Infusion

- Insulin adheres to glass and plastic
 - Blocked with albumin containing solutions
 - Blocked with careful pretreatment of IV lines
 - Insulin solution in final dilution
 - Running 40-60 ml through line
 - Carefully flush
 - Use lines after plasma transfusion
- Insulin should be diluted in saline in a glass bottle
 - Infusing into the saline
 - Do not allow undiluted insulin to run down the glass
- If lines are not pretreated (line change)
 - Insulin kinetics may be erratic
 - Sudden increase in delivery once the sites are occupied