Glucose in Neonatal Foals

Jon Palmer, VMD New Bolton Center, University of Pennsylvania

Fluid Therapy Glucose Support

All compromise neonates

Will benefit from exogenous glucose support

Blood glucose interpretation

Not relate directly to adequate glucose stores
Hypoglycemia

Normoglycemia
Hyperglycemia

Glucose Measurement

 Bedside monitoring – Glucometers
 Whole blood measurement
 Electrochemical biosensor
 Photometric test strips

Glucose Measurement Variation

PCV Total protein P_{O_2} ■ pH Model/Instrument Reagent strip Handling Age Lot

Glucose Measurement PCV

Glucose Measurement PCV and Glucose Level

Tang et al Arch Pathol Lab Med. 2000;124:1135–1140

Glucose Measurement PCV

Whole blood vs plasma Reagent strip sieve plasma Increased hematocrit Block the "holes" Rouleau formation

Glucose Measurement PCV

Critically ill neonatal foals
Microclot formation
Sample hemolysis
Protein deposition
High fibrinogen levels
Fibrin aggregation
Platelet/other cellular aggregation
Other inflammatory phenomena

Placental glucose delivery to fetus
 Glucose transfer rate - 4 to 8 mg/kg/min
 Fetal foal 6.8 mg/kg/min
 Fetal calf 5 mg/kg/min
 Varies between species
 Varies with energy intake on dam

Birth - glucogenesis
Normal fetus is born before gluconeogenesis
Low birth blood glucose - 50 - 60% of mare's
Neonatal foal 1.4 - 2.0 mmol/L
Continues to drop for the first few hours of life
Low point of blood glucose levels
Is usually 2 to 4 hours after birth

Established fetal distress Placentitis/lack of nutrient transfer Precocious glucogenesis Late term/perinatal fetal distress Failure of metabolic transition Neonate suffering from perinatal disease Normal birth blood glucose level Drops to < detectable within hours</p>

Glucose Support Response to Exogenous Glucose

Response patterns of compromised neonates

Hyperglycemia

- Slow insulin response
- Continued glucogenesis
- Stress glucogenesis
- Metabolic anarchy
- Hypoglycemia
 - SIRS response
 - Hypermetabolism
 - Failure of metabolic transition

Give 4 – 8 mg/kg/min 100 – 250 ml/hr 10% glucose Don't bolus glucose Most foals tolerate 8 mg/kg/min Foals with severe sepsis/septic shock Infusion rate as high as 20 mg/kg/min With high exogenous glucose loads Addition of thiamine to the fluids may help ensure proper metabolism

Glucose Support Glucose Intolerance

Hyperglycemic neonate

- Check the infusion rate
- Is intolerance secondary to sepsis?
- Be patient, allow time for insulin response

Glucose Support Glucose Intolerance

Consequences of hyperglycemia Without an insulin response Selective cellular dehydration Glucose diuresis with subsequent fluid and electrolyte wasting Mild hyperglycemic (< 13.5 mmol/L) No glucose diuresis Give the neonate time (hours) to develop insulin response Glucose diuresis, blood dextrose is persistently high without apparent adaptation Initiate insulin therapy

Decrease glucose infusion

Glucose Support Glucose Intolerance

Consequences of hyperglycemia
Sepsis???
Strict glucose control
NICE SUGAR

Glucose Support Renal Glucose Threshold

Glucose threshold higher in neonate Marked variation between species Immature kidney Increased glucose reabsorption capacity Low Affinity High-capacity Transport Only mechanism in adult kidney some species Usually less efficient in neonate High Affinity Low-capacity Transport Compensates for what other transport mechanisms miss Higher affinity in neonates Not present in adults of all species

Glucose Support Renal Glucose Threshold

High glucose threshold in neonate/fetus
 Lower GFR

- Complete reabsorption more likely
- ↑
 efficiency of high affinity low capacity transport mechanisms

Threshold varies between individuals
 Foals – 10 to 11 mmol/L
 Crias – 11 to 13 mmol/L

Glucose Support Regular Insulin therapy

Should we use tight glucose regulation?

- Continuous infusion of regular insulin
 - Well tolerated by most neonates
 - Allows more control of glucose kinetics
- Most cases insulin deficiency
 - Not resistance
 - Respond to low insulin levels
 - Even in the face of sepsis
 - Reflect slow adaptation to regulation
 - Neonatal Metabolic Maladaptation

Glucose Support Regular Insulin therapy Dose regular insulin – CRI Range – 0.00125-0.2 U/kg/hr Began at 0.0025 U/kg/hr Double rate every 4 to 6 hr > until the glucose controlled > or the infusion rate is > 0.04 u/kg/hrResponse to the infusion Not seen immediately Avoid the "glucose rollercoaster"

Glucose Support Preparing Regular Insulin Infusion

Use Regular Insulin Insulin <3 months old</p> Insulin is a suspension To resuspend Gently rock or roll Never shake For neonates 0.1 U/ml solution In 100-150 mls of saline

Glucose Support Preparing Regular Insulin Infusion

Insulin adheres to glass and plastic

- Blocked with albumin containing solutions
- Blocked with careful pretreatment of IV lines
 - Insulin solution in final dilution
 - Running 40-60 ml through line
 - Carefully flush
 - Use lines after plasma transfusion
- Insulin should be diluted in saline in a glass bottle
 - Infusing into the saline
 - Do not allow undiluted insulin to run down the glass
- If lines are not pretreated (line change)
 - Insulin kinetics may be erratic
 - Sudden increase in delivery once the sites are occupied

